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Abstract

We study the power and limitations of semidefinite programming for representing
semialgebraic functions that satisfy various nonnegativity constraints. In Part I, this
is done in the context of semialgebraic optimization, and in Part II, in the context of
dynamical systems.

We start Part I by introducing the framework of time-varying semidefinite pro-
grams (TV-SDPs). TV-SDPs, which can be seen as a broad generalization of the
notion of continuous linear programs introduced by Bellman in 1953, are semidefinite
programs (SDPs) whose data and solutions are allowed to vary with time. For any
TV-SDP that satisfies some mild assumptions, we show that polynomial functions of
time are arbitrarily close to being optimal, and that the best polynomial solution of
a given degree can be found by solving an SDP of tractable size. We also show that
certificates of near optimality can be computed via SDP.

We then turn our attention to studying the interplay between two notions that
are known to make semialgebraic optimization problems more tractable: the algebraic
notion of a sum of squares decomposition and the geometric notion of convexity. In
2009, Blekherman showed that for high enough number of variables, there must be
convex forms of degree 4 that are not sums of squares. Remarkably, no examples are
known to date. We show that all degree-4 convex forms are sums of squares when
the number of variables is less than or equal to 4. A main ingredient of the proof is
the derivation of certain “generalized Cauchy-Schwarz inequalities,” which could be
of independent interest.

We start Part II by studying SDP-based approaches for certifying properties of
dynamical systems via semialgebraic Lyapunov functions. We give the first example of
a globally asymptotically stable polynomial vector field with rational coefficients that
does not have a polynomial Lyapunov function, even locally. By contrast, we show
that an asymptotically stable homogeneous vector field admits a Lyapunov function
that is a polynomial divided by a power of the 2-norm of the state variable. We further
show that this Lyapunov function can be found via semidefinite programming.

We finally propose an SDP-based approach for the problem of learning a dy-
namical system from noisy observations of a few trajectories and subject to side
information (i.e., any knowledge that we may have about the dynamical system be-
sides trajectory data). We identify six types of side information that arise naturally
in applications and show that they can be imposed on polynomial vector fields via
semidefinite programming. We study how well polynomial vector fields can approx-
imate continuously-differentiable ones while satisfying side information. We end by
showing the applicability of our framework to imitation learning problems in robotics.
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Chapter 1

Introduction

The content of this thesis traces back to the work of two prominent mathematical
figures of the 19th century: the work of David Hilbert on sum of squares (sos) rep-
resentations of nonnegative polynomials, and the work of Aleksandr Lyapunov on
dynamical systems analysis. While initially considered remote from practical appli-
cations, their work has been recently brought to center stage in the optimization and
control communities thanks to some recent theoretical and algorithmic developments
in the area of semidefinite programming (SDP)1. These developments have in turn
enabled a wealth of new applications in the sciences and engineering.

Our broad goal in this thesis is to shed some light on the fascinating connections
between the worlds of SDP, sos representations of polynomials, and dynamical systems
theory. More concretely, we study the power and limitations of SDP-based approaches
to (i) solving semialgebraic optimization problems , (ii) verifying stability properties
of dynamical systems, and (iii) learning dynamical systems from data. Before we give
a formal definition of semidefinite programming, let us preview in Figure 1.1 some
of its applications to semialgebraic optimization and dynamical systems theory that
are studied in this thesis. In Figure 1.1a, a robotic arm has learned, by solving an
SDP, to autonomously execute a demonstrated task in an environment filled with
obstacles. Figure 1.1b depicts an instance of a time-varying maximum flow problem
together with a near-optimal flow that was computed via SDP. Figure 1.1c shows a
streamplot of a polynomial vector field for which a natural SDP-based approach fails
to prove stability.

1.1 Semidefinite Programming

We denote by Sn the space of n × n symmetric matrices equipped with the inner
product

〈A,B〉 :=
n∑

i,j=1

AijBij ∀A,B ∈ Sn,

1When it is clear for the context, we use the acronym SDP to denote both “semidefinite pro-
gramming” and “semidefinite program”.

1



(a) A robotic arm picking objects and placing them in a bin.
The robot learns how to accomplish the task from a single human
demonstration by solving an SDP. See chapter 7 for more details.

(b) An instance of a time-varying maxflow problem studied in
Chapter 2. On every edge, we plot in red the edge capacities as
a function of time, and in blue the optimal flow among polyno-
mial functions of time of degree 10. This flow was computed by
solving an SDP.

(c) Streamplot of a polynomial vector field that is asymptotically
stable but does not admit a polynomial Lyapunov function even
locally. This is our main construction in Chapter 5.

Figure 1.1: Preview of some applications of semidefinite programming that are an-
alyzed in this thesis. Figures 1.1a and 1.1b are instances where semidefinite pro-
gramming produces good solutions, empirically or theoretically. Figure 1.1c shows a
possible limitation of SDP-based methods in dynamical systems theory.
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and the partial ordering � given by[
A � B ⇐⇒ xT (A−B)x ≥ 0 ∀x ∈ Rn

]
∀A,B ∈ Sn.

Semidefinite programming is the task of minimizing a linear function 〈C,X〉 over the
set of positive semidefinite matrices

S+
n := {X ∈ Sn | X � 0}

subject to affine constraints

〈Ai, X〉 = bi, i = 1, . . . ,m.

Here, C, A1, . . ., Am are symmetric n×n matrices, and b is an n×1 vector. Semidefi-
nite programming contains as special case some of the most common classes of convex
optimization problems, including linear programs, convex quadratic programs, and
second-order cone programs.

Among the factors that have contributed to the popularization of SDPs are some
recent algorithmic developments and powerful theoretical results. On the algorithmic
side, interior point methods, that were initially developed for linear programs, were
adapted for the setting of semidefinite programming; they allow one to solve SDPs
to arbitrary accuracy in polynomial time [202]. On the theoretical side, semidefinite
programming enjoys a rich duality theory. Indeed, every SDP

min
X∈S+

n

〈C,X〉

subject to 〈Ai, X〉 = bi, i = 1, . . . ,m,
(1.1)

comes with a dual program

max
x∈Rm

〈b, x〉
subject to C −

∑m
i=1 xiAi � 0,

(1.2)

that is also an SDP. The objective value attained by any feasible solution to the
dual program (1.2) is always a lower bound on the optimal value of the primal pro-
gram (1.1). Under mild assumptions, there is no duality gap, i.e., the optimal values
of (1.1) and (1.2) match. The ability to quantify how far a feasible solution is from
global optimality is a desirable property in many applications. See [202] for a survey
on the theoretical and algorithmic aspects of semidefinite programming.

Throughout the years, semidefinite programming has been successfully applied
in diverse areas such as combinatorial optimization [82], control theory[49], compu-
tational geometry [42], and statistics [34]. In fact, there are several mathematical
problems where the state-of-the-art methods are based on semidefinite programming
[82, 51]. This observation calls for a more thorough study of the power of SDP-based
methods.

Most of the content of this thesis connects semidefinite programming to two appli-
cation areas: semialgebraic optimization and dynamical systems theory. The next two
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sections of this introduction will make this connection clearer. In Chapter 2, however,
we extend some theoretical and algorithmic aspects of semidefinite programming it-
self by considering a setting where the data of a semidefinite program vary with time.
Among the questions studied in Chapter 2 are: (i) How can one compute upper
bounds and lower bounds on the optimal value of an SDP with time-varying data?
and (ii) Under what conditions can the difference between the two bounds be made
arbitrarily small?

1.2 SDP-Based Methods in Semialgebraic Opti-

mization

By and large, the most common functions used for modeling purposes in optimization
are the linear functions. This is mostly due to their simplicity, and the availability of
software dedicated to linear models. Stepping into the nonlinear world, one encounters
polynomial functions. One of the most basic questions that an optimizer can ask about
a polynomial p is whether it is nonnegative, i.e., whether

p(x) ≥ 0 ∀x ∈ Rn. (1.3)

An efficient way to check nonnegativity of polynomial functions naturally leads to
an efficient method to minimize (or maximize) polynomial functions as well. Indeed,
consider the unconstrained minimization problem

min
x∈Rn

p(x). (1.4)

The optimal value of (1.4) is equal to the optimal value of the following maximization
problem (over the scalar γ):

max
γ∈R

γ s.t. p− γ is nonnegative. (1.5)

Given an efficient way of testing nonnegativity, one can, for example, perform bisec-
tion on γ to find the optimal value of (1.4) (whenever finite lower and upper bounds
on the optimal value are available).

1.2.1 Sum of squares programming

Unfortunately, testing whether a polynomial is nonnegative is an NP-hard problem
already for degree-4 polynomials [144]. In 1888 [97], for reasons that were different
from the computational considerations mentioned here, Hilbert studied the question
of whether every nonnegative polynomial p could be represented as a sum of squares
of other polynomials, i.e., whether

there exist polynomials h1, . . . , hr s.t. p =
r∑
i=1

h2
i . (1.6)
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He showed that the answer is negative, i.e., that there exist nonnegative polynomials
that are not sums of squares (sos). Still, the representation (1.6) is appealing from an
optimization point of view. Indeed, it acts as an algebraic certificate of nonnegativity
of the polynomial p: given polynomials h1, . . . , hr, one can check that equality (1.6)
holds by expanding the sum on its right hand side and comparing the coefficients of
the resulting polynomial to those of p. By contrast, using the definition of nonnega-
tivity in (1.3) directly requires the evaluation of the polynomial p at infinitely many
points. Moreover, it can be shown [156] that a degree-d polynomial p admits an sos
representation as in (1.6) if and only if there exists a positive semidefinite matrix Q
that satisfies the identity

p(x) = z(x)TQz(x), (1.7)

where z(x) := (1, x1, x2, x1x2, . . . , x
d
2
n )T denotes the vector of all monomials in x of

degree less than or equal to d/2. Searching for such a matrix Q is an SDP, which
can be solved efficiently. This remains true even if some of the coefficients of p are
unknown. The technique of replacing nonnegativity constraints with an SDP that
searches for an appropriate sos decompositions, such as the one in (1.6), is called sum
of squares programming.

Sos programming can be extended to the constrained setting. Suppose we are
interested in testing nonnegativity of a polynomial p over a closed basic semial-
gebraic set K (i.e., a set that is defined by finitely many polynomial inequalities
g1 ≥ 0, . . . , gm ≥ 0). Then, a decomposition of p as

p(x) = σ0(x) +
m∑
i=1

σi(x)gi(x), (1.8)

where the polynomials σi are sos, is a certificate of nonnegativity of p over the set K.
In a similar fashion to the unconstrained case, the search for the sos polynomials σi
can be cast as an SDP whenever a bound on their degrees is imposed.

Another important extension of sos programming deals with semialgebraic func-
tions and leads to new techniques to tackle semialgebraic optimization problems. We
give a definition of semialgebraic functions and semialgebraic optimization below.

Definition 1.2.1. A set is closed semialgebraic if it is a finite union of closed basic
semialgebraic sets. A function is called semialgebraic if its epigraph is a closed semi-
algebraic set. An optimization problem is called semialgebraic if its objective function
is semialgebraic, and its feasible set is closed semialgebraic.

Examples of semialgebraic functions include polynomials of course, but also ratio-
nal functions (i.e., ratio of polynomials), the square root function, and the absolute
value function. Extensions of the sum of squares approach often allow for an au-
tomated search for algebraic certificates of nonnegativity of semialgebraic functions
over semialgebraic sets via semidefinite programming.
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1.2.2 Analyzing sum of squares relaxations

The sos programming approach described in the previous subsection usually trades
off “exactness for efficiency”. For example, for the problem (1.5) of unconstrained
minimization of a given polynomial p, replacing the nonnegativity constraint with an
sos constraint leads to a lower bound on the minimum value of p. This lower bound can
be computed efficiently via SDP, but is not sharp in general. A lot of effort goes into
studying special structural properties of the problem under which sos programming
leads to exact solutions or, at least, to solutions that are good enough for the problem
at hand. For instance, one of the main results of Chapter 2 relies on the existence of
(small) sos certificates of nonnegativity for univariate polynomial matrices. Another
example where we leverage special properties of the problem at hand appears in
Chapter 4. We show there that for homogeneous polynomial vector fields, asymptotic
stability is equivalent to the existence of a rational Lyapunov function, and that
Lyapunov inequalities on both this rational function and its time derivative have sos
certificates. Finally, in Chapters 6 and 7, we analyze the power of sos programming
for the task of fitting a polynomial vector field to trajectory data while imposing
certain properties on the trajectories of this vector field.

1.2.3 When sos representations meet convex analysis

When a semialgebraic optimization problem enjoys convexity properties, one can use
either sos programming or gradient descent-based methods from nonlinear optimiza-
tion to tackle the problem. Each one of these two approaches leverages a different
property of the optimization problem, and it is not at all obvious how to design an
algorithm that can benefit from the power of these two approaches at the same time.
Indeed, consider problem (1.4) for example, and assume that the polynomial p that
appears as the objective function is convex. On the one hand, gradient descent meth-
ods with small enough step size are guaranteed to converge to a global minimizer
of p, but fail to take advantage of the fact that the objective function has a spe-
cial algebraic structure. On the other hand, sos programming makes no assumption
about convexity of the polynomial p, and as a result, does not explicitly exploit this
property. This observation motivates our study in Chapter 3, where we focus on
the intriguing interplay between the geometric notion of convexity and the algebraic
notion of a sum of squares decomposition.

1.3 Power and Limitations of SDP in Dynamical

Systems Theory

An area that has historically generated a lot of interest in SDP is stability analysis
of equilibrium points of dynamical systems. Consider a dynamical system

ẋ = f(x) (1.9)
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with f : Rn → Rn, and an equilibrium point xe (i.e., a point xe ∈ Rn with f(xe) = 0).
Roughly speaking, the equilibrium point xe is stable in the sense of Lyapunov if
trajectories that start close enough to that point remain close enough forever. If,
in addition to being stable in the sense of Lyapunov, trajectories that start near xe
(resp. all trajectories in Rn) converge to xe, then xe is said to be locally asymptotically
stable (resp. globally asymptotically stable).

At first glance, it may seem that proving any stability property of a dynamical
system requires solving the differential equation in (1.9) analytically. This approach,
however, is impractical for most nonlinear dynamical systems. The key insight behind
Lyapunov theory is to turn the question of testing stability into a search for an
energy-like function V (called a Lyapunov function) that decreases along trajectories.
For instance, under mild assumptions on the dynamical system ẋ = f(x), global
asymptotic stability of an equilibrium point xe is equivalent [112] to the existence of
a radially unbounded function V : Rn → Rn that satisfies the following Lyapunov
inequalities:

V (x) > 0 and − V̇ (x) := −〈∇V (x), f(x)〉 > 0 for all x 6= xe. (1.10)

In practice, one restricts the search for Lyapunov functions to a finite dimensional
family of functions, and uses optimization techniques to find one that satisfies the
requirements in (1.10). Let us illustrate this process for the particularly nice setting
of linear dynamical systems. It is a classical result that the origin of a linear dynamical
system ẋ = Ax (where A is a square matrix) is asymptotically stable2 if and only if
this system admits a quadratic Lyapunov function V , say

V (x) = xTQx, where Q ∈ Sn. (1.11)

A function of the form (1.11) is a valid Lyapunov function if and only if

Q � 0 and −QA− ATQ � 0. (1.12)

By multiplying the matrix Q by an appropriate positive constant, we can replace the
constraints in (1.12) with the equivalent constraints

Q � I and −QA− ATQ � I,

where I denotes the identity matrix. Checking whether a linear dynamical system is
asymptotically stable can therefore be done efficiently via SDP.

In this thesis, we are mostly interested in the setting where the vector field f
in (1.9) is a polynomial function. In that case, it is natural to combine tools from
Lyapunov theory and semialgebraic optimization to certify stability properties of an
equilibrium point of f . Indeed, a common approach in the literature is to parameterize

2For homogeneous dynamical systems (in particular, for linear dynamical systems), global asymp-
totic stability is equivalent to local asymptotic stability. Therefore, we refer to an equilibrium point
of a homogeneous dynamical system that satisfies one (and thus both) of the latter properties simply
as asymptotically stable.
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the candidate function V itself as a polynomial of a fixed degree. The Lyapunov
inequalities arising from (1.10) lead then to the search for a polynomial function V
that satisfies the constraints3

V sos and − V̇ sos.

As we have seen, this search can be carried out via SDP.
At this point, one might wonder whether stability of polynomial vector fields can

always be established with the help of polynomial Lyapunov functions. The answer
is known to be negative when the notion of stability of interest is global asymptotic
stability [12], and when the notion of stability of interest is local asymptotic stability
and the coefficients of the polynomial vector field are allowed to be irrational [29].
We construct in Chapter 5 the first example of a polynomial vector field with ratio-
nal coefficients that is locally asymptotically stable but does not admit an analytic
Lyapunov functions, let alone a polynomial one.

Considerable effort is devoted to generalizing the search for Lyapunov functions
beyond the class of polynomial functions, and to finding suitable assumptions on the
vector field f under which Lyapunov functions can be efficiently computed. In Chap-
ter 4, we show that an equilibrium point of a homogeneous polynomial vector field
is asymptotically stable if and only if there exists a corresponding rational Lyapunov
function (i.e., ratio of two polynomials). We further show that the Lyapunov inequal-
ities on both the rational function and its time derivative have sos certificates. Hence
such a Lyapunov function can be found by semidefinite programming.

Interestingly, the same tools that help analyze dynamical systems can also be ap-
plied for learning these dynamical systems from data. We focus in Chapter 6 on the
efficacy of sos programming for the problem of learning a vector field that fits sample
trajectories and satisfies a concrete collection of what we call “side information” con-
straints. We end by showing the applicability of our learning framework for imitation
learning problems in robotics in Chapter 7.

1.4 Outline

The outline of this thesis is as follows:
Part I: On the Interface of Semidefinite Programming and Semialge-

braic Optimization
The first part of this thesis studies the interplay between semidefinite programming

and semialgebraic optimization. In Chapter 2, we study time-varying semidefinite
programs, which are SDPs whose data (and solutions) depend on time. Our focus
is on the setting where the data vary polynomially with time. In Chapter 3, we
study the relationship between two notions that make semialgebraic optimization
more tractable: the geometric notion of convexity, and the algebraic notion of a sum
of squares decomposition.

3In this introduction, we ignore the subtleties arising from the distinction between strict and non
strict Lyapunov inequalities.
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Part II: Semidefinite Programming for Analyzing and Learning Dynam-
ical Systems

The second part of this thesis focuses on the power and limitations of SDP-based
approaches to analyzing dynamical systems and learning them from data. In Chap-
ters 4 and 5, we focus on stability of dynamical systems. We show both positive and
negative results concerning the existence of semialgebraic Lyapunov functions. In
Chapters 6 and 7, we study how semialgebraic optimization tools can be used in the
context of learning dynamical systems from data.

1.5 Related Publications

The publications associated with this thesis are as follows:

• Amir Ali Ahmadi and Bachir El Khadir. Time-Varying Semidefinite Programs.
Accepted to Mathematics of Operations Research, 2020.

• Bachir El Khadir. On Sum of Squares Representation of Convex Forms and
Generalized Cauchy-Schwarz Inequalities. SIAM Journal on Applied Algebra
and Geometry, 4(2), 377–400, 2020.

• Amir Ali Ahmadi and Bachir El Khadir. On Algebraic Proofs of Stability for
Homogeneous Vector Fields. IEEE Transactions on Automatic Control 65 (1),
325-332, 2019.

• Amir Ali Ahmadi and Bachir El Khadir. A Globally Asymptotically Stable
Polynomial Vector Field with Rational Coefficients and no Local Polynomial
Lyapunov Function. Systems & Control Letters 121, 50-53, 2018.

• Amir Ali Ahmadi and Bachir El Khadir. Learning Dynamical Systems with Side
Information. In the Proceedings of Machine Learning Research vol 120:1–10,
2020. Full version of the paper available at arXiv:2008.10135.

• Bachir El Khadir, Jack Varley, and Vikas Sindhwani. Teleoperator Imitation
with Continuous-time Safety. In the Proceedings of the Robotics: Science and
Systems (RSS), 2019.
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Part I

On the Interface of Semidefinite
Programming and Semialgebraic

Optimization
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Chapter 2

Time-Varying Semidefinite
Programs

2.1 Introduction

We study semidefinite programs (SDPs) whose feasible set and objective function
depend on time. More specifically, a time-varying semidefinite program (TV-SDP) is
an optimization problem of the form

sup
x∈Ln

∫ 1

0
〈c(t), x(t)〉dt

subject to Fx(t) � 0 ∀t ∈ [0, 1] a.e..
(2.1)

Here, the operator F : Ln → Sm is defined as

Fx(t) := A0(t) +
n∑
i=1

xi(t)Ai(t) +
n∑
i=1

∫ t

0

xi(s)Di(t, s)ds, (2.2)

where

Ln := {x : [0, 1]→ Rn | x measurable and sup
t∈[0,1],i=1,...,n

|xi(t)| <∞},

and

Sm := {X : [0, 1]→ Rm×m | X(t) is symmetric ∀t ∈ [0, 1] and sup
t∈[0,1],i,j=1,...,m

|Xij(t)| <∞}.

The data to the problem consist of c ∈ Ln, Ai ∈ Sm for i ∈ {0, . . . , n}, and
Di for i ∈ {1, . . . , n}, which satisfies the requirement that Di(t, .) be a measurable
function in Sm for all t ∈ [0, 1] and that supt,s∈[0,1] ‖Di(t, s)‖ < ∞, where ‖.‖ is
any matrix norm. For a symmetric matrix M , we write M � 0 to denote that
M is positive semidefinite, i.e., has nonnegative eigenvalues. The abbreviation a.e.
indicates that the matrix inequality in (2.1) should hold “almost everywhere”; i.e., for
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every t ∈ [0, 1]\N , where N is some set of measure zero with respect to the Lebesgue
measure.

For an interval I ⊆ R, we define the set

Sm+(I) := {X ∈ Sm | X(t) � 0 ∀t ∈ I a.e.}.

With this notation, a feasible solution to the TV-SDP in (2.1) is a function x ∈ Ln

that satisfies the constraint
Fx ∈ Sm+([0, 1]), (2.3)

and the feasible set of the TV-SDP is the set F := {x ∈ Ln | Fx ∈ Sm+([0, 1])}.
The choice of the interval [0, 1] is of course made for convenience. Without loss of
generality, we can reduce any bounded interval [a, b], with a < b, to the interval [0, 1]
by performing the change of variable t′ = t−a

b−a .
We equip Ln and Sm respectively with the inner products 〈·, ·〉Ln and 〈·, ·〉Sm

defined as

〈x, y〉Ln :=

∫ 1

0

〈x(t), y(t)〉 dt =
n∑
i=1

∫ 1

0

xi(t)yi(t) dt,

and

〈X, Y 〉Sm :=

∫ 1

0

〈X(t), Y (t)〉 dt =

∫ 1

0

Tr(X(t)Y (t)) dt,

where Tr(A) stands for the trace of a matrix A. Using the notation for the first inner
product above, the TV-SDP in (2.1) can be written more compactly as

sup
x∈Ln

〈c, x〉Ln

subject to Fx ∈ Sm+([0, 1]).

The terms
∫ t

0
xi(s)Di(t, s)ds in (2.2) are called kernel terms and broaden the class

of problems that can be modelled as a TV-SDP. The special case where the terms
Di(t, s) are identically zero is already interesting and presents an infinite sequence
of SDPs indexed by time t ∈ [0, 1]. While these SDPs are in principle independent
of each other, basic strategies such as sampling t and solving a finite number of
independent SDPs generally fail to provide a solution to the TV-SDP. This is because
candidate functions obtained from simple interpolation schemes can violate feasibility
in between sample points. When the terms Di(t, s) are not zero, the value that a
solution takes at a given time affects the range of values that it can take at other
times. When the terms Di(t, s) are constant functions of t and s for instance, the
TV-SDP in (2.1) is already powerful enough to express linear constraints involving
the function x and its derivatives and/or integrals of any order. For example, to
impose a constraint on x′(t), one can introduce a new decision variable y ∈ Ln which
is related to x via the linear constraint x(t)−

∫ t
0
y(s) ds = 0.

In this chapter, we consider the data c, A0, . . . , An, D1, . . . , Dn of the TV-SDP in
(2.1) to belong to the class of polynomial functions. Our interest in this setting stems
from two reasons. On the one hand, the set of polynomial functions is dense in the set
of continuous functions on [0, 1] and hence powerful enough for modeling purposes.
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On the other hand, polynomials can be finitely parameterized (in the monomial basis
for instance) and are very suitable for algorithmic operations.

Even when the input data to a TV-SDP is polynomial, there is no reason to expect
its optimal solution to be a polynomial or even a continuous function. Nevertheless,
we concern ourselves in this chapter with finding feasible polynomial solutions to a
TV-SDP (which naturally provide lower bounds on its optimal value). Our motivation
for making this choice is twofold. First, solutions that are smooth are often preferred
in practice. Consider for example the problem of scheduling generation of electric
power when daily user consumption varies with time, or that of finding a time-varying
controller for a robotic arm that serves some routine task in a production line. In such
scenarios, smoothness of the solution is important for avoiding deterioration of the
hardware or guaranteeing safety of the workplace. Continuity of the solution is even
more essential as physical implementation of a discontinuous solution is not viable.

Our second motivation for studying polynomial solutions is algorithmic. We will
show (cf. Section 2.3.2) that optimal polynomial solutions of a given degree to a
TV-SDP with polynomial data can be found by solving a (non time-varying) SDP of
tractable size.

These observations call for a better understanding of the power of polynomial
solutions as their degree increases, or a methodology that can bound their gap to
optimality when their degree is capped. These considerations are the subjects of
Section 2.3.1 and Section 2.4 respectively.

As an illustration of a TV-SDP with polynomially time-varying data and a preview
of our solution technique, consider problem (2.1) with n = 2 and data

A0(t) =


(1− 8

5
t)2 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

 , A1(t) =


−1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

 , A2(t) =


0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0

 ,

D1(t, s) = D2(t, s) = 0, c(t) =

(
9t2 − 9t+ 1

23t3 − 34t2 + 12t

)
.

As the kernel terms Di(t, s) are identically zero here, an optimal solution to this
TV-SDP is a function xopt ∈ L2 such that for all t in [0, 1] (except possibly on a
set of measure zero), xopt(t) is a maximizer of 〈c(t), x〉 under the constraints A0(t) +
x1A1(t) + x2A2(t) � 0. In Figure 2.1, the dotted red line represents the optimal
polynomial solution xpoly,20(t) of degree 20. The feasible set

Ft := {x ∈ R2 | A0(t) + x1A1(t) + x2A2(t) � 0}

for some sample times t is delimited by blue lines. The objective function c(t) is rep-
resented by a black arrow, which also moves in time. The feasible solution xpoly,20(t)
achieves an objective value of 0.89. By solving an inexpensive dual problem (with
d = 10 in problem (2.15) of Section 2.4), we can conclude that the optimal value of the
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Figure 2.1: An example of a TV-SDP

TV-SDP cannot be greater than 0.93. Moreover, we can get arbitrarily close to the
exact optimal value of the TV-SDP by increasing the degree of the candidate poly-
nomial solutions (cf. Section 2.3.1) or the level in the hierarchy of our dual problems
(cf. Section 2.4.1).

2.1.1 Related literature

Time-varying SDPs contain as special case the time-varying versions of most common
classes of convex optimization problems, including linear programs, convex quadratic
programs, and second-order cone programs. In the linear programming case, this
problem has been studied in the literature under the name of continuous linear pro-
grams (CLPs). In its most general form, a CLP is a problem of the type

sup
x(t)

∫ 1

0
〈c(t), x(t)〉dt

subject to A(t)x(t) +
∫ t

0
D(t, s)x(s)ds ≤ b(t) ∀t ∈ [0, 1] a.e.,

(2.4)

where A(t), D(t, s) ∈ Rm×n, c(t) ∈ Rn, and b(t) ∈ Rm, for all t, s ∈ [0, 1].
This problem was introduced by Bellman [36] and has since been studied by

several authors who have provided algorithms, structural results, or a duality theory
for CLPs; see e.g. [127, 200, 16, 130, 201, 86, 50, 162, 21, 17, 135, 188, 78, 207]
and references therein. Several applications, e.g. in manufacturing, transportation,
robust optimization, queueing theory, and revenue management, can also be found in
these references.

Since CLPs are perceived as a hard problem class in general, most authors make
additional assumptions on how the problem data varies with time, or, in the case of the
so-called “separated CLPs” (SCLPs), how the kernel terms and the non-kernel terms
interact [170, 168, 171, 135, 78, 207, 50, 162, 17]. SLCPs enjoy many properties that
general CLPs do not. For instance, under mild assumptions, SCLPs with piecewise-
polynomial data admit piecewise-polynomial solutions [169]—an attractive feature
from an algorithmic point view. Unfortunately, the situation for TV-SDPs is not as
nice, even without a kernel term. For example, consider problem (2.1) with n = 2
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and data

A0(t) =

(
1 0
0 1

)
, A1(t) =

(
1 0
0 −1

)
, A2(t) =

(
0 1
1 0

)
, D1(t, s) = D2(t, s) = 0, and c(t) =

(
t

1− t

)
.

This TV-SDP has no kernel terms. Furthermore, all its data is constant except for the
objective function which varies linearly with time. Its unique optimal solution, however, is
easily seen to be c(t)

‖c(t)‖ , i.e.,

x(t) =
1√

t2 + (1− t)2

(
t

1− t

)
,

which is not a piecewise-polynomial function.

The closest work in the CLP literature to our work is the paper [33] by Bampou
and Kuhn. The authors of this paper also assume that the data of the their CLP
varies polynomially with time and employ semidefinite programming to approximate
the optimal solution by polynomial (and piecewise polynomial) functions of time.
Our approach here generalizes their nice algorithms and convergence guarantees to
the SDP setting. In [33], the authors also make use of the rich duality theory of
CLPs to get a sequence of upper bounds that converges to the optimal value of (2.4)
under certain conditions. The duality framework that we present in this chapter is
different in nature and is closer in spirit to the approach in [123], [32]. As it turns
out, it suffices for us to assume boundedness of the primal feasible set to guarantee
convergence of our dual bounds to the optimal value of the TV-SDP.

The only generalization of continuous linear programs that we are aware of appears
in the work of Wang, Zhang, and Yao in [205], which makes a number of important
contributions to separated continuous conic programs. The assumptions in [205] are
however stronger than the ones we make here. In particular, there are separation
assumptions on the kernel and non-kernel terms in [205] and the data to the problem
is assumed to vary only linearly with time. Another work related to this chapter is
the work by Lasserre in [123], which studies a parametric polynomial optimization
problem of the form

sup
x(y)∈Rn

∫
y∈K f(x(y), y)dφ(y)

subject to hj(x(y), y) ≥ 0 ∀j ∈ {1, . . . , r},∀y ∈ K φ-a.e.,
(2.5)

where φ is a probability distribution on some compact basic semialgebraic set K ⊆ Rs,
and hj(x, y) are polynomial functions of x and y. An inequality involving y is valid
φ-a.e. if it is valid for all y in K except on some set K ′ with φ(K ′) = 0. When the
kernel terms in (2.2) are zero, problem (2.1) can in theory be put in the form of (2.5)
by setting s = 1 and replacing the semidefinite constraint with nonnegativity of all
2m − 1 polynomials that form the principal minors of Fx(t). Our duality framework
in Section 2.4 is inspired by the approach in [123]. However, as we are dealing with a
much more structured problem, we are also able to find the best polynomial solution
of a given degree to (2.1) with an SDP of tractable size, as well as prove asymptotic
optimality of polynomial solutions even in presence of the kernel terms.
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Finally, we remark that at a broader level, the idea of using semidefinite program-
ming to find polynomial solutions (or “policies”) to dynamic or uncertain optimization
problems has been applied before to questions in multi-stage robust and stochastic
optimization; see e.g. [40] and [32].

2.1.2 Organization and contributions of the chapter

This chapter is organized as follows. In Section 2.2, we prove that under a bounded-
ness assumption, the optimal value of the TV-SDP in (2.1) is attained (Theorem 3).
This proof is obtained by combining two theorems that are used also in other sections
of the chapter. The first (Theorem 1) shows that a sequence of linear functionals that
satisfies a certain boundedness property on nonnegative polynomials has a weakly
convergent subsequence. The second (Theorem 2) shows that when a weakly conver-
gent sequence of functions in Ln satisfies linear inequalities of the type in (2.3), then
so does its weak limit.

In Section 2.3, we prove that under a strict feasibility assumption, polynomial
solutions are arbitrarily close to being optimal to the TV-SDP in (2.1) (Theorem
4). We also show that this assumption cannot be removed in general (Example 1).
Furthermore, we show how sum of squares techniques combined with certain matrix
Positivstellensatzë enable the search for the best polynomial solution of a given degree
to be cast as an SDP of polynomial size (Theorem 6).

In Section 2.4, we develop a hierarchy of dual problems (or relaxations) that give
a sequence of improving upper bounds on the optimal value of the TV-SDP in (2.1).
We show that under a boundedness assumption, these upper bounds converge to the
optimal value of the TV-SDP (Theorem 7). We also show that our dual problems can
be cast as SDPs (Theorem 8). For a given TV-SDP, the dimensions of the matrices
that feature in both our primal and dual SDP hierarchies grow only linearly with the
order of the hierarchy.

In Section 2.5, we present applications of time-varying semidefinite programs to a
maximum-flow problem with time-varying edge capacities, a wireless coverage prob-
lem with time-varying coverage requirements, and to bi-objective semidefinite opti-
mization where the goal is to approximate the Pareto curve in one shot. Finally, we
end with some future research directions in Section 2.6.

2.1.3 Notation

We denote

· the (i, j)th entry of a matrix A by Aij,

· the trace of a matrix A by Tr(A),

· the vector of all ones by 1,

· the identity matrix by I,

· the diagonal matrix with the vector x ∈ Rn on its diagonal by diag(x),
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· the standard inner product in Rn by 〈·, ·〉; i.e., for two vectors x, y ∈ Rn,
〈x, y〉 =

∑n
i=1 xiyi,

· the infinity-norm of a vector by ‖ · ‖∞; i.e., for a vector x ∈ Rn, ‖x‖∞ =
maxi=1,...,n |xi|,

· the set of n× n (constant) symmetric matrices by Sn and its subset of positive
semidefinite matrices by Sn+,

· the degree of a polynomial p by deg(p) (when p is a vector of polynomials,
deg(p) denotes the maximum degree of its entries),

· the set of n × m matrices whose components are polynomials in the variable
t with real coefficients by Rn×m[t]. For d ∈ N, Rn×m

d [t] denotes the subset of
Rn×m[t] consisting of matrices whose entries are polynomials of degree at most
d. When m = 1, we simply use the notation Rn[t] and Rn

d [t], and when n = 1
as well, we simplify the notation to R[t] and Rd[t].

· We denote the set of linear functionals on Rn[t] by Mn.

· For µ ∈ Mn, we denote by µi : R[t] → R the unique linear functional that
satisfies

µ(g) =
n∑
i=1

µi(gi) ∀g ∈ Rn[t].

· For a function f ∈ Ln, we denote by lf the element of Mn defined by

lf (g) := 〈f, g〉Ln =

∫ 1

0

〈f(t), g(t)〉dt ∀g ∈ Rn[t].

2.2 The Optimal Value of a Bounded TV-SDP is

Attained

In this section, we study the following question: If the optimal value opt of (2.1) is
finite (i.e., the problem is feasible and bounded above), does there exist a function
x∗ ∈ Ln such that 〈c, x∗〉Ln = opt? Many of the arguments given here will be used
again in Section 2.4 on duality theory.

The question of attainment of the optimal value (i.e., existence of solutions) is a
very basic one and has been studied in the continuous linear programming literature
already; see e.g. [86]. In the TV-SDP case, note that even for standard SDPs that do
not depend on time, the optimal value is not always attained unless the feasible set is
bounded. We prove in this section that under the following boundedness assumption

“∃γ > 0 such that for all feasible solutions x to (2.1), ‖x(t)‖∞ ≤ γ for all t ∈ [0, 1] a.e.”,
(2.6)

the optimal value of the TV-SDP in (2.1) is always attained. This is not an immediate
fact as the search space Ln is infinite dimensional. The idea is to prove that a sequence
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of feasible solutions to a TV-SDP whose objective value approaches the optimal value
must have a converging subsequence and that the limit of the subsequence must also
be feasible. It turns out that the right notion of convergence in this context is weak
convergence. We begin by stating the definition, and then prove that the weak limit
of a sequence of feasible solutions is again feasible.

Definition 2.2.1 (Weak Convergence). A sequence of linear functionals {µi} in Mn

converges weakly to a linear functional µ∞ ∈ Mn (we write µi ⇀ µ∞) if for all
p ∈ Rn[t],

µi(p)→ µ∞(p) as i→∞.

Similarly, a sequence of functions {f i} in Ln converges weakly to a function f∞ ∈
Ln (we write f i ⇀ f∞) if lf i ⇀ lf∞ as i→∞.

The next theorem shows a compactness result for the set Mn.

Theorem 1. Let {µd} be a sequence of linear functionals in Mn. If the following
implication holds for every d ∈ N and every polynomial q ∈ Rn

d [t]:

qi(t) ≥ 0 ∀t ∈ [0, 1], ∀i ∈ {1 . . . , n} =⇒ |µd(q)| ≤
n∑
i=1

∫ 1

0

qi(t)dt,

then there exists a function f ∈ Ln and a subsequence of {µd} that converges weakly
to lf .

In the proof of this theorem, we will invoke the following lemma, which is obtained
by a direct application of a result of Lasserre [125, Theorem 3.12a].1

Lemma 2.2.2 (See Theorem 3.12a in [125]). For a linear functional λ ∈M1, if there
exists a scalar κ such that the inequalities

0 ≤ λ(h) ≤ κ

∫ 1

0

h(t) dt

hold for every polynomial h ∈ R[t] that is nonnegative on [0, 1], then there exists a
function f ∈ L1 such that λ(g) = lf (g),∀g ∈ R[t].

Theorem 1. The ideas of the proof are inspired by those in [204, Chap. 7]. Let
{b0, b1, . . .} be a basis of Rn[t] where all entries of the polynomials bj are of the form
tk for some nonnegative integer k. Let dj denote the maximum degree of the entries
of bj. It is clear by assumption that |µi(bj)| ≤ n for every i, j ∈ N such that i ≥ dj.
Consider the sequence of real numbers {µi(b0)}i≥d0 . This sequence is bounded in
absolute value by n. As such, it has a convergent subsequence {µi,(0)(b0)}. Next
consider {µi,(0)(b1)}i≥d1 . Again, this is a sequence of real numbers that is bounded
in absolute value by n and so it has a convergent subsequence {µi,(1)(b1)}. Iterating

1To get the statement of the lemma, apply [125, Theorem 3.12a] with n = 1,K = [0, 1],m =
2, g1 = t, g2 = 1− t, Ly = λ, Lz = lv, where v ∈ L1 is the constant function equal to one, and observe
that for any p ∈ R[t], the polynomials p2g1, p

2g2, p
2g1g2 are nonnegative on the interval [0, 1].
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this procedure, we obtain, for each integer r ≥ 0, a subsequence of linear functionals
{µi,(r)} with the property that {µi,(r+1)} ⊆ {µi,(r)}. Moreover, for all j, r ∈ N with
r ≥ dj, the sequence of numbers {µi,(r)(bj)} converges as i → ∞. Now consider the
diagonal sequence of linear functionals {µi,(i)}. For every j, {µi,(i)(bj)} converges as
i → ∞ as the sequence of linear functionals {µi,(i)}i≥dj is a subsequence of {µi,(dj)}.
Since the functions {bi} span Rn[t] and the elements of the sequence {µi,(i)} are linear
functionals, the sequence {µi,(i)(g)} converges for all polynomial functions g ∈ Rn[t].
Let µ∞ be the linear functional defined by

µ∞(g) = lim
i→∞

µi,(i)(g) ∀g ∈ Rn[t]. (2.7)

We have just proven that the sequence {µi,(i)} converges weakly to µ∞. The claim of
the theorem would be established if we show that there exists a function f ∈ Ln such
that µ∞(g) = lf (g),∀g ∈ Rn[t]. In order to get this statement from Lemma 2.2.2, for
j ∈ {1, . . . , n}, let λj ∈M1 be defined as

λj(w) :=

∫ 1

0

w(t) dt− µ∞j (w) ∀w ∈ R[t].

Let h ∈ R[t] be a polynomial that is nonnegative on [0, 1]. Take h(j) ∈ Rn[t] to be the
vector-valued polynomial whose entries are all identically zero except for the jth one
that is equal to h. From (2.7) we see that

µ∞j (h) = µ∞(h(j)) = lim
i→∞

µi,(i)(h(j)) = lim
i→∞

µ
i,(i)
j (h).

Since for i larger than the degree of h,

|µi,(i)j (h)| = |µi,(i)(h(j))| ≤
n∑
k=1

∫ 1

0

h
(j)
k (t) dt =

∫ 1

0

h(t) dt,

we have that that |µ∞j (h)| ≤
∫ 1

0
h(t) dt, and therefore

|λj(h)| ≤
∣∣∣∣∫ 1

0

h(t) dt

∣∣∣∣+ |µ∞j (h)| ≤ 2

∫ 1

0

h(t) dt.

Similarly, it is straightforward to argue that λj(h) ≥ 0. Hence, by Lemma 2.2.2, for

each j ∈ {1, . . . , n}, there exists a function f̂j ∈ L1 such that λj(w) = lf̂j(w),∀w ∈
R[t]. Therefore,

µ∞j (w) =

∫ 1

0

(
1− f̂j(t)

)
w(t) dt, ∀w ∈ R[t].

The function f ∈ Ln that we were after can hence be taken to be f := (1− f̂1, . . . , 1−
f̂n)T .
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The next theorem shows that when all functions in a sequence satisfy linear in-
equalities of the type in (2.3), their weak limit does the same.

Theorem 2. Let the operator F be as in (2.2). If a sequence of functions {fk} in Ln

converges weakly to a function f∞ ∈ Ln and satisfies Ffk ∈ Sm+([0, 1]) for all k ∈ N,
then Ff∞ ∈ Sm+([0, 1]).

To prove this theorem, we need the following lemma, which also implies that the
set Sm+([0, 1]) is self-dual. This is a generalization of the corresponding statement
for the non time-varying case, which states that the cone Sn+ is self-dual.

Lemma 2.2.3. For any function Q ∈ Sm, Q ∈ Sm+([0, 1]) if and only if

〈Q,P 〉Sm ≥ 0 for all P ∈ Sm+([0, 1]) ∩ Rm×m[t].

Proof. The only if part is straightforward. For the other direction, fix Q ∈ Sm and
assume that 〈Q,P 〉Sm ≥ 0 for all P ∈ Sm+([0, 1]) ∩ Rm×m[t]. For t ∈ [0, 1], let λ(t)
be the smallest eigenvalue of Q(t) and u(t) be an associated eigenvector of norm one.
Denote by 1λ(t)<0 the univariate function over t ∈ [0, 1] that is equal to 1 when λ(t) < 0
and zero otherwise. Let P∞(t) := 1λ(t)<0u(t)u(t)T . We claim that 〈Q,P∞〉Sm ≥ 0.
This would imply that ∫ 1

0

1λ(t)<0λ(t)dt = 〈Q,P∞〉Sm ≥ 0,

which proves that λ(t) is nonegative almost everywhere on [0, 1]; i.e., the desired
result.

To prove the claim, observe that since continuous functions are dense in the space
of bounded and measurable functions on [0, 1] (see e.g. [1, Theorem 2.19]), for every
positive integer k, there exist continuous functions φk : [0, 1]→ R and uk : [0, 1]→ Rn

such that ∫ 1

0

(φk(t)− 1λ(t)<0)2dt ≤ 1

k
and

∫ 1

0

‖uk(t)− u(t)‖2
∞dt ≤ 1

k
.

Notice that without loss of generality we can assume that for all k ∈ N and t ∈ [0, 1]
we have φk(t) ≥ 0 as ∣∣|φk(t)| − 1λ(t)<0

∣∣ ≤ |φk(t)− 1λ(t)<0|.

The Stone-Weierstrass theorem (see e.g. [198]) can now be utilized to conclude that
for every positive integer k, there exist polynomial functions φ̃k : [0, 1] → R, ũk :
[0, 1]→ Rn such that

0 ≤ φ̃k(t)− φk(t) ≤
1

k
and ‖ũk(t)− uk(t)‖2

∞ ≤
1

k
∀t ∈ [0, 1].

We can thus assume without loss of generality again that the functions φk and uk are
polynomial functions of the variable t.

20



Now let P k(t) = φk(t)uk(t)uk(t)
T . Then (i) P k ∈ Sm+([0, 1]) ∩ Rm×m[t], and (ii)

‖P∞ − P k‖Sm → 0 as k →∞, where ‖.‖Sm here denotes the norm associated to the
scalar product 〈., .〉Sm . From the Cauchy-Schwarz inequality we have

|〈Q,P∞〉Sm − 〈Q,P k〉Sm | ≤ ‖Q‖Sm‖P∞ − P k‖Sm .

As (i) implies that 〈Q,P k〉Sm ≥ 0 for all k, and (ii) implies that the right hand
side of the above inequality goes to zero as k goes to infinity, we conclude that
〈Q,P∞〉Sm ≥ 0.

Theorem 2. For an element y ∈ Ln, we denote by ỹ the element of Ln+1 defined by

ỹ :=

(
1
y

)
. By applying Fubini’s double integration theorem on the region {(t, s) ∈

[0, 1]2 | s ≤ t}, it is straightforward to see that

〈Fy, P 〉Sm = 〈ỹ, F ∗P 〉Ln+1 ∀y ∈ Ln, ∀P ∈ Sm,

where F ∗ is the adjoint of the affine operator F (see equation (2.14) in Section 2.4
for its explicit expression). Now fix a function P ∈ Sm+([0, 1]) ∩ Rm×m[t]. Using
the easy direction of Lemma 2.2.3 and the fact that Ffk ∈ Sm+([0, 1]) for all k, we
have that 〈Ffk, P 〉Sm ≥ 0 for all k. This implies that 〈f̃k, F ∗P 〉Ln+1 ≥ 0 for all k.
By weak convergence, we conclude that 〈f̃∞, F ∗P 〉Ln+1 ≥ 0, implying in turn that
〈Ff∞, P 〉Sm ≥ 0. Since P was arbitrary in Sm+([0, 1])∩Rm×m[t], using Lemma 2.2.3
again, we have Ff∞ ∈ Sm+([0, 1]).

We are now ready to show that a bounded TV-SDP attains its optimal value.

Theorem 3. If the TV-SDP in (2.1) is feasible and satisfies the boundedness assump-
tion in (2.6), then there exists a feasible function xopt ∈ Ln that attains its optimal
value.

Proof. Let opt denote the optimal value of (2.1), which is finite under the assumptions
of the theorem. From (2.6), there exists a scalar γ > 0 such that any feasible solution
x ∈ Ln to the TV-SDP satisfies ‖x(t)‖∞ ≤ γ for all t ∈ [0, 1] a.e.. Hence, for any
positive integer k, there exists a feasible solution xk ∈ Ln, with ‖xk(t)‖∞ ≤ γ ∀t ∈
[0, 1] a.e., such that

〈c, xk〉Ln ≥ opt− 1

k
. (2.8)

Let us now consider the sequence of linear functionals
{ l

xk

γ

}
, which satisfies the

conditions of Theorem 1. Therefore, a subsequence of the functions {xk} converges
weakly to a limit x∞ ∈ Ln. It is clear by weak convergence that x∞ achieves the
optimal value to (2.1), and Theorem 2 guarantees that x∞ is feasible to the TV-SDP.
Letting xopt = x∞ gives the desired result.
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2.3 The Primal Approach: Polynomial Solutions

to a TV-SDP

We switch our focus in this section to algorithmic questions. We show in Section 2.3.2
that when the data c, A0, . . . , An, D1, . . . , Dn to our TV-SDP belongs to the class of
polynomial functions, then the best polynomial solution of a given degree to the TV-
SDP can be found by solving a semidefinite program of tractable size. This motivates
us to study whether one can always find feasible solutions to a TV-SDP that are
arbitrarily close to being optimal just by searching over polynomial functions. While
this is not always true (see Example 1 below), in Section 2.3.1 we show that it is true
under a strict feasibility assumption (see Definition 2.3.1).

Example 1. Consider the TV-SDP in (2.1) with n = 1,

c(t) = 0, A0(t) =


0 0 0 0
0 1

2
− t 0 0

0 0 1 0
0 0 0 0

 , A1(t) =


t− 1

2
0 0 0

0 t− 1
2

0 0
0 0 −1 0
0 0 0 1

 , and D1 = 0.

The resulting constraints read(
t− 1

2

)
x(t) ≥ 0,

(
t− 1

2

)
(x(t)− 1) ≥ 0, 0 ≤ x(t) ≤ 1 ∀t ∈ [0, 1] a.e..

The unique feasible solution xopt(t) to this TV-SDP, up to a set of measure zero, is

xopt(t) =

{
0, if t ≤ 1

2
,

1, if t > 1
2
.

It is clear that xopt is not continuous, let alone polynomial.

For the remainder of this chapter, for a set S ∈ {Sm,Sm+([0, 1])} and a non-
negative integer d, we define Sd to be the set of functions x ∈ S whose entries are
polynomials of degree d, i.e.

Sm
d = Sm ∩ Rm×m

d [t], Sm+([0, 1])d = Sm+([0, 1]) ∩ Rm×m
d [t].

2.3.1 Polynomials are optimal under a strict feasibility as-
sumption

We show in this section that under the following strict feasibility assumption, the
optimal value of the TV-SDP in (2.1) remains the same when the function class Ln

is replaced with Rn[t].

Definition 2.3.1. We say that the TV-SDP in (2.1) is strictly feasible if there exists
a function xs ∈ Ln and a positive scalar ε such that

Fxs(t) � εI ∀t ∈ [0, 1] a.e..
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Theorem 4. Consider the TV-SDP in (2.1) with its optimal value denoted by opt.
If the TV-SDP is strictly feasible, then there exists a sequence of feasible polynomial
solutions {xk} such that

〈c, xk〉Ln → opt as k →∞.
As we will shortly see in the proof, the strict feasibility assumption enables us

to approximate any feasible solution of (2.1) by a continuous, and later polynomial,
solution. We use mollifying operators to obtain the continuous approximation.

Definition 2.3.2 (See [1]). The mollifying operator Mv : L1 → L1, indexed by a
nonnegative integer v, is the linear operator defined by

(Mvf)(t) =

∫ 1

0

vJ(v(t− s))f(s)ds ∀f ∈ L1

where J(t) = c exp(− 1
1−t2 ) when t ∈ [−1, 1] and J(t) = 0 otherwise, and c is so that∫

R J(t) dt = 1.

Remark 1. To lighten our notation, we write Mvf(t) instead of (Mvf)(t). We also
remark that one can extend the definition of mollifying operators to functions that are
not scalar valued by making them act element-wise. For example, the extension to
spaces Ln and Sm would be defined as follows:

Mvf := (Mvfi)i ∀f ∈ Ln and MvP := (MvPij)ij ∀P ∈ Sm.

Any property of mollifying operators that we prove on scalar-valued functions below
extends in a straightforward manner to functions that are vector or matrix valued.

Proposition 1 (See Theorem 2.29 in [1]). For all f ∈ L1 and all v ∈ N, the function
Mvf is continuous. Moreover,∫ 1

0

|Mvf(t)− f(t)|dt→ 0 as v →∞.

Furthermore, if f is a continuous function of t, then

sup
t∈[0,1]

|Mvf(t)− f(t)| → 0 as v →∞.

Lemma 2.3.3. For for any v ∈ N, the mollifying operator Mv satisfies the following
properties:

(a) For any M ∈ Sm, if M(t) � 0 ∀t ∈ [0, 1] a.e., then MvM(t) � 0 ∀t ∈ [0, 1].

(b) For any a ∈ R[t] and x ∈ L1, supt∈[0,1] |a(t)Mvx(t) −Mv(a · x)(t)| → 0 as
v →∞.

(c) For any polynomial function d : R2 → R and x ∈ L1, let g(t) =
∫ t

0
d(t, s)x(s)ds.

Then

sup
t∈[0,1]

∣∣∣∣Mvg(t)−
∫ t

0

d(t, s)Mvx(s)ds

∣∣∣∣→ 0 as v →∞.
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Proof. The proof of (a) simply follows from the fact that the function J is nonnegative
on R.

To prove (b), let L := supt∈[0,1] |a′(t)| and γ := supt∈[0,1] |x(t)|. Notice that

a(t)Mvx(t)−Mv(a · x)(t) =

∫ 1

0

vJ(v(t− s))(a(t)− a(s))x(s)ds.

Hence,

|a(t)Mvx(t)−Mv(ax)(t)| ≤ Lγ

∫ 1

0

vJ(v(t− s))|t− s|ds.

By the change of variable u := v(s− t) and in view of the evenness of the function J,
we get ∫ 1

0

vJ(v(t− s))|t− s|ds =
1

v

∫ v(1−t)

−vt
J(u) |u| du ≤ 1

v

∫ 1

−1

J(u)du ≤ 1

v
.

Therefore,

sup
t∈[0,1]

|a(t)Mvx(t)−Mv(a · x)(t)| ≤ Lγ

v

and the claim follows.
Let us now prove (c). Observe that, on the one hand, for every t ∈ [0, 1],∣∣∣∣Mvg(t)−

∫ t

0

d(t, s)Mvx(s) ds

∣∣∣∣ ≤ |Mvg(t)− g(t)|+
∣∣∣∣g(t)−

∫ t

0

d(t, s)Mvx(s)ds

∣∣∣∣
≤ |Mvg(t)− g(t)|+

∫ t

0

|d(t, s)| · |x(s)−Mvx(s)| ds

≤ |Mvg(t)− g(t)|+ sup
t,s∈[0,1]

|d(t, s)|
∫ 1

0

|x(s)−Mvx(s)| ds.

On the other hand, from Proposition 1 (and continuity of g), we know that

sup
t∈[0,1]

|Mvg(t)− g(t)| → 0 as v →∞,

and ∫ 1

0

|Mvx(s)− x(s)| ds→ 0 as v →∞.

Combining these three facts, we conclude that

sup
t∈[0,1]

|Mvg(t)−
∫ t

0

d(t, s)Mvx(s)ds| → 0 as v →∞.

Properties (b) and (c) in Lemma 2.3.3 give the following corollary.
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Corollary 1. Let F be as in (2.2) with A0, . . . , An, D1, . . . Dn polynomial and let ‖ · ‖
be any matrix norm. Then,

sup
t∈[0,1]

‖MvFx(t)− FMvx(t)‖ → 0 as v →∞.

We now go back to the proof of optimality of polynomial solutions. The idea is as
follows. We know that for any ε > 0 there exists a feasible solution xε whose objective
value is within ε of opt when opt <∞ and larger than 1

ε
when opt = +∞. We con-

struct a sequence of feasible polynomial solutions whose objective value converge to
〈c, xε〉Ln . We do so in three steps. First, using existence of a strictly feasible solution
xs to (2.1), we perturb xε slightly to make it strictly feasible without changing its
objective value by much. Second, we approximate the perturbed solution by a con-
tinuous solution using mollifying operators. Finally, we invoke the Stone-Weierstrass
theorem to approximate the continuous solution with a polynomial solution.

of Theorem 4. For any ε > 0, let xε be a feasible solution to the TV-SDP in (2.1)
such that

opt− 〈c, xε〉Ln ≤ ε if opt <∞ and 〈c, xε〉Ln ≥ 1

ε
if opt = +∞.

Let xs be any strictly feasible solution to the TV-SDP in (2.1) and for λ ∈ (0, 1) let

xλ,ε := (1− λ)xε + λxs.

Observe that for all ε > 0 and λ ∈ (0, 1) the function xλ,ε is also strictly feasible to
(2.1). Moreover, as λ→ 0, 〈c, xλ,ε〉Ln → 〈c, xε〉Ln .

For a nonnegative integer v, let Mv be the mollifying operator that appears in
Definition 2.3.2 and Remark 1. For all ε > 0, λ ∈ (0, 1), and v ∈ N, let xv,λ,ε :=
Mvx

λ,ε. The function xv,λ,ε is continuous by Proposition 1. We claim that xv,λ,ε is
strictly feasible to the TV-SDP in (2.1) for any ε > 0 and λ ∈ (0, 1) when v is large
enough. Indeed, for any such ε and λ, there exists βλ,ε > 0 such that Fxλ,ε(t) �
βλ,εI ∀t ∈ [0, 1] a.e.. By property (a) of Lemma 2.3.3,

MvFx
λ,ε(t) � βλ,εI ∀t ∈ [0, 1].

Let ‖ · ‖ be any matrix norm. Using Corollary 1,

sup
t∈[0,1]

‖MvFx
λ,ε(t)− Fxv,λ,ε(t)‖ → 0 as v →∞.

By continuity of the minimum eigenvalue function we conclude that for v high enough,

Fxv,λ,ε(t) � βλ,ε
2
I ∀t ∈ [0, 1].
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Moreover, for all ε > 0, λ ∈ (0, 1), Proposition 1 implies that

〈c, xv,λ,ε〉Ln → 〈c, xλ,ε〉Ln as v →∞.

As a final step, for a fixed ε > 0, λ ∈ (0, 1), and v ∈ N, we invoke the Stone-
Weierstrass theorem to approximate xv,λ,ε by a sequence {ps,v,λ,ε}s∈N of polynomial
elements of Ln such that

sup
t∈[0,1]

‖xv,λ,ε(t)− ps,v,λ,ε(t)‖∞ → 0 as s→∞.

Note that

sup
t∈[0,1]

‖Fxv,λ,ε(t)− Fps,v,λ,ε(t)‖ ≤ C sup
t∈[0,1]

‖xv,λ,ε(t)− ps,v,λ,ε(t)‖∞

where C := sup
t,s∈[0,1]

∑n
i=1 ‖Ai(t)‖ + ‖Di(s, t)‖. By the same reasoning as before, for s

high enough, the polynomial ps,v,λ,ε will be (strictly) feasible to our TV-SDP. More-
over,

〈c, ps,v,λ,ε〉Ln → 〈c, xv,λ,ε〉Ln as s→∞.

To get the overall result, fix ε small enough, then λ small enough, then v large enough,
and then s large enough.

2.3.2 Finding the best polynomial solution to a TV-SDP via
SDP

In this section, we show how one can find the best polynomial solution of a given
degree to a TV-SDP. This is done by reformulating the problem as a semidefinite
program. This formulation is based on the fact that any univariate polynomial ma-
trix X(t) that is positive semidefinite over an interval has a certain sum of squares
representation of low degree. This representation can be found by semidefinite pro-
gramming using the well-known connection (see e.g. [157, 122]) between sum of
squares polynomials and SDPs.

Theorem 5. (See [67, Theorem 2.5], [153, Theorem 6.11], and see [27] for
a history of related proofs) Let X ∈ Sm

d be a univariate m × m polynomial
matrix of degree d. If d is odd, then X(t) � 0 ∀t ∈ [0, 1] if and only if there exist (not
necessarily square) polynomial matrices B1 and B2 of degree d−1

2
such that

X(t) = tB1(t)TB1(t) + (1− t)B2(t)TB2(t).

Similarly, if d is even, then X(t) � 0 ∀t ∈ [0, 1] if and only if there exist (not
necessarily square) polynomial matrices B1 and B2 of degree d

2
and d

2
− 1 respectively

such that
X(t) = B1(t)TB1(t) + t(1− t)B2(t)TB2(t).
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This theorem results in a semidefinite representation of polynomial matrices that
are positive semidefinite on the interval [0, 1] as we describe next. This transformation
is rather standard and can be traced back to the work of Nesterov [146].

Proposition 2. Let d,m be positive integers. There exist two linear maps αmd (which

maps S d+1
2
m to Sm when d is odd and S( d

2
+1)m to Sm when d is even) and βmd (which

maps S d+1
2
m to Sm when d is odd and S d

2
m to Sm when d is even) such that for

any X ∈ Sm
d, X(t) � 0 ∀t ∈ [0, 1] if and only if one can find positive semidefinite

matrices Q1, Q2 of appropriate sizes that satisfy the equation

X = αmd (Q1) + βmd (Q2).

Proof. Fix positive integers m and d. Let Y ∈ Sm
d be an m×m polynomial matrix

of degree d. It is well known that Y can be written as B(t)TB(t) for some polynomial
matrixB if and only if the polynomial yTY (t)y is a sum of squares of some polynomials
in the variables (t, y1, . . . , ym); see e.g. [118]. The latter condition is equivalent to
existence of a (d

2
+ 1)m× (d

2
+ 1)m matrix Q � 0 (d is necessarily even) such that the

following polynomial identity holds

yTY (t)y = v(t, y)TQv(t, y), (2.9)

where
v(t, y) = (y1, . . . , ym, y1t, . . . , ymt, . . . , y1t

d
2 , . . . , ymt

d
2 )T

is the vector of all monomials of the form ylt
k for l = 1, . . . ,m, and k = 0, . . . , d

2
; see

e.g. [9, Section 3]. For notational convenience, we index the entries of the matrix Q
by the monomials in v := v(t, y). This means that when we write Qvi,vj , we refer the
(i, j)-th entry of Q.

Note that for any symmetric matrix Q, there exists a unique Y ∈ Sm that satisfies
the identity (2.9). Indeed, considering the expression v(t, y)TQv(t, y) as a polynomial
in y1, . . . , ym with coefficients in R[t], the coefficient of yiyj is equal to twice the
(i, j)-th entry of Y (t) when i 6= j, and equal to the (i, i)-the entry of Y (t) otherwise.

Define Λm
d to be the linear function that maps a symmetric matrix Q ∈ S( d

2
+1)m to

the m×m polynomial matrix Y of degree d that satisfies identity (2.9), i.e.

Y = Λm
d (Q) ⇐⇒ Yij(t) = cij

∑
k,l∈{0,..., d

2
}

Qyitk,yjtlt
k+l ∀i, j ∈ {1, . . . ,m}, (2.10)

with cij = 1
2

when i 6= j and cii = 1.
We have just shown that an m × m polynomial matrix Y of degree d can be

written as Y (t) = B(t)TB(t) for some polynomial matrix B if and only if there exists
an m(d

2
+ 1)×m(d

2
+ 1) positive semidefinite matrix Q such that

Y = Λm
d (Q).
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Combining this result with Theorem 5, we get that any m×m polynomial matrix X
is positive semidefinite on [0, 1] if and only if there exist positive semidefinite matrices
Q1, Q2 such that

X = αmd (Q1) + βmd (Q2),

where

αmd (Q) = tΛm
d−1(Q) and βmd (Q) = (1− t)Λm

d−1(Q) when d is odd,

αmd (Q) = Λm
d (Q) and βmd (Q) = t(1− t)Λm

d−2(Q) when d is even.
(2.11)

The next theorem summarizes the results of this subsection.

Theorem 6. For d ∈ N, the following SDP finds the best polynomial solution of
degree d to the TV-SDP in (2.1) with data c, A0, A1, . . . , An, D1, . . . , Dn:

max
x,Q1,Q2

〈c, x〉Ln

s.t. x ∈ Rn
d [t]

Q1, Q2 � 0,
Fx = αmd′ (Q1) + βmd′ (Q2).

(2.12)

Here, d′ is the degree of Fx, i.e.

d′ = max{deg(A0), max
i=1,...,n

deg(Ai) + d, max
i=1,...,n

deg(Di) + d+ 1}.

From a practical standpoint, a nice feature of this SDP hierarchy is the dimensions
of the matrices Q1, Q2 grow only linearly with d.

Remark 2. For implementation purposes, one does not need to explicitly write out
the linear maps αmd′ and βmd′ in Theorem 6. Certain solvers, such as YALMIP [131]
or SOSTOOLS [150], accept the problem directly in the following form (and do the
conversion to an SDP in the background):

max
x,X1,X2

〈c, x〉Ln

s.t. x ∈ Rn
d [t], X1, X2 ∈ Sm

d′−1,
Fx(t) = tX1(t) + (1− t)X2(t),
yTX1(t)y, yTX2(t)y are sums of squares of polynomials,

when d is odd, and

max
x,X1,X2

〈c, x〉Ln

s.t. x ∈ Rn
d [t], X1 ∈ Sm

d′ , X2 ∈ Sm
d′−2,

Fx(t) = X1(t) + t(1− t)X2(t),
yTX1(t)y, yTX2(t)y are sums of squares of polynomials,
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when d is even. The aforementioned linear maps however help us with the notation
and presentation of the next section.

Remark 3. The results of this section combined with Theorem 4 imply the follow-
ing: For any strictly feasible TV-SDP, the SDPs in (2.12), indexed by the integer d,
produce a sequence of feasible polynomials to the TV-SDP in (2.1), whose objective
values converge to the optimal value of (2.1). Note that we are not making any claims
about the convergence of the sequence of polynomials returned by these SDPs. Indeed,
our interest is not for these polynomials to be close (in some distance measure) to an
optimal solution of (2.1) (which might not even be continuous), but for them to be
feasible and have arbitrarily good objective value.

2.4 The Dual Approach: Obtaining Upper Bounds

In the previous section, we showed how one can obtain arbitrarily good lower bounds
on the optimal value of a strictly feasible TV-SDP by searching for polynomial so-
lutions of increasing degree. In practice, one often has a computational budget and
cannot increase the degree of the candidate polynomials beyond a certain threshold.
It is therefore very valuable to know how far the objective value of the best polyno-
mial solution that one has found is from the optimal value of (2.1). Addressing this
need is the subject of this section. More specifically, in Section 2.4.1 below we give a
hierarchy of dual problems (or relaxations), indexed by a nonnegative integer d, that
provide a sequence of improving upper bounds on the optimal value of (2.1). We
show that under the boundedness assumption in (2.6), these upper bounds converge
to the optimal value as d→∞. While the original formulation of the dual problems
in Section 2.4.1 is infinite dimensional, we show in Section 2.4.2 that each of these
problems can be solved exactly as an SDP of tractable size.

We remark that our dual problems are different to the best of our knowledge
from those appearing in the literature on continuous linear programs. For instance,
we can derive the Lagrangian dual of problem (2.1) using standard techniques from
infinite-dimensional linear programming [16]. This problem would read

inf
P∈Sm+([0,1])

〈P,A0〉Sm

subject to F̃ ∗P (t) + c(t) = 0 ∀t ∈ [0, 1] a.e.,
(2.13)

where F̃ ∗P (t) is the vector of size n whose i-th component is given by the (i+ 1)-th
component of F ∗P (t), with F ∗ as in (2.14) below. This is of course another TV-
SDP, for which we can search for polynomial solutions to obtain upper bounds on
the optimal value of (2.1). The reason we do not take this approach is that we do
not want to make strict feasibility assumptions on both the primal and the dual
(which our current proof strategy would require in order to ensure convergence of
these bounds). Furthermore, more involved assumptions would likely be required
to guarantee strong duality between the two TV-SDPs. Even in the special case of
continuous linear programs, a number of assumptions are needed to obtain strong
duality [86, 33].

29



The following definitions will be useful in the formulation of our dual problems.

Definition 2.4.1 (Adjoint maps). We define the adjoint of the affine map F in (2.2)
to be the linear map F ∗ : Sm → Ln+1 that acts on P ∈ Sm as follows:

F ∗P (t) =


Tr(A0(t)P (t))

Tr(A1(t)P (t)) +
∫ 1
t Tr(D1(t, s)P (s)) ds
...

Tr(An(t)P (t)) +
∫ 1
t Tr(Dn(t, s)P (s)) ds

 . (2.14)

For an even positive integer d, the adjoint of the linear map Λm
d defined in (2.10)

is the linear map Λm
d
∗ : Sm → S( d

2
+1)m that acts on P ∈ Sm as follows:

Λm
d
∗(P ) :=

(∫ 1

0

tk+lPij(t)dt

)
yitk,yjtl

,

where the notation Qyitk,yjtl stands for the (r, s) entry of the matrix Q ∈ S( d
2

+1)m with

r and s being the position of the monomials yit
k and yjt

l in the vector

(y1, . . . , ym, y1t, . . . , ymt, . . . , y1t
d
2 , . . . , ymt

d
2 )T .

For d ∈ N, the adjoints of the linear maps αmd and βmd defined in (2.11) are defined
as follows:

αmd
∗(P ) := Λm

d−1
∗(tP ) and βmd

∗(P ) := Λm
d−1
∗((1− t)P ) ∀P ∈ Sm when d is odd,

αmd
∗(P ) := Λm

d
∗(P ) and βmd

∗(P ) := Λm
d−2
∗(t(1− t)P ) ∀P ∈ Sm when d is even.

The reader can check (using Fubini’s double integration theorem when needed)
that these adjoint maps satisfy the following identities.

Proposition 3. For all x ∈ Ln and P ∈ Sm,

〈Fx, P 〉Sm = 〈
(

1
x

)
, F ∗P 〉Ln+1 .

For a linear map L ∈ {Λm
d , α

m
d , β

m
d }, a polynomial matrix P ∈ Sm, and a constant

symmetric matrix Q of appropriate size,

〈L(Q), P 〉Sm = Tr(QL∗(P )).
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2.4.1 Dual formulation

To derive our dual problems, we start by observing that using Lemma 2.2.3, we can
rewrite the TV-SDP in (2.1) as the following problem:

max
x∈Ln

〈c, x〉Ln

subject to 〈Fx, P 〉Sm ≥ 0 ∀P ∈ Sm+([0, 1]) ∩ Rm×m[t].

To get an upper bound on the optimal value of (2.1), we relax the constraint in this
problem by asking it to hold only for all P ∈ Sm+([0, 1])d, i.e. for all polynomial
matrices of degree bounded by some threshold d. This gives us our dual problem at
level d, whose optimal value we denote by ud:

ud := max
x∈Ln

〈c, x〉Ln

subject to 〈Fx, P 〉Sm ≥ 0 ∀P ∈ Sm+([0, 1])d.
(2.15)

Lemma 2.4.2 (Weak Duality). Let opt denote the optimal value of the TV-SDP in
(2.1) and ud be as in (2.15). Then, for all d ∈ N, we have

opt ≤ ud and ud+1 ≤ ud.

Proof. Fix d ∈ N. Since Sm+([0, 1])d ⊆ Sm+([0, 1])d+1, it is clear that ud+1 ≤ ud. Note
that the only difference between problem (2.15) and the TV-SDP in (2.1) is that we
have replaced the constraint Fx ∈ Sm+ by 〈Fx, P 〉Sm ≥ 0 ∀P ∈ Sm+([0, 1])d. By
Lemma 2.2.3, the former constraint is stronger than the latter. Therefore, opt ≤
ud.

To get strong duality, we will make the additional assumption in (2.6); i.e. we
assume that there exists a positive scalar γ such that

Fx ∈ Sm+ =⇒ ‖x(t)‖∞ < γ ∀t ∈ [0, 1] a.e..

We further require that this constraint already be included in F . In other words, F
is taken to be of the form

Fx :=

F̂ x 0 0
0 γI − diag(x) 0
0 0 diag(x)− γI

 , (2.16)

where F̂ x � 0 denotes the remaining constraints of the TV-SDP.

Theorem 7 (Strong Duality). Suppose that the TV-SDP in (2.1) satisfies the bound-
edness assumption (2.6) as explicitly imposed by a map F of the form (2.16). Let
opt ∈ R ∪ {−∞} denote the optimal value of this TV-SDP. Then the optimal value
ud of problem (2.15) converges to opt as d→∞.
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Proof. From Lemma 2.4.2, the sequence {ud} is nonincreasing and bounded below by
opt. It therefore converges to a (possibly infinite) limit u∗ ≥ opt. To conclude the
proof, we show that u∗ ≤ opt.

Observe first that if there exists a nonnegative integer d such that ud = −∞, then
u∗ = opt = −∞ and we are done. We can therefore suppose that the sequence {ud}
never takes the value −∞. We claim that when d ≥ deg(c), ud cannot take the value
+∞ either. To see why, fix d ≥ deg(c) and let x ∈ Ln be any function that satisfies
〈Fx, P 〉Sm ≥ 0 ∀P ∈ Sm+([0, 1])d. For any q ∈ Rn

d [t] that is elementwise nonnegative
on [0, 1], by taking

P ∈


0 0 0

0 diag(q) 0
0 0 0

 ,

0 0 0
0 0 0
0 0 diag(q)

 ,

we get that |〈q, x〉Ln | ≤ γ〈q,1〉Ln . Let

mc := min
i=1,...,n

min
t∈[0,1]

ci(t)

and observe that the polynomial p(t) := c(t) − mc1 is elementwise nonnegative on
[0, 1]. We therefore have

|〈c, x〉Ln| ≤ |〈c−mc1, x〉Ln|+ |〈mc1, x〉Ln|
= |〈p, x〉Ln|+ |mc||〈1, x〉Ln|
≤ γ〈p,1〉Ln + |mc|γ〈1,1〉Ln ,

which proves our claim that ud is finite.
As a consequence, for any integer d ≥ deg(c) and for any positive scalar ε, there

exists a function xε,d ∈ Ln such that

〈Fxε,d, P 〉Sm ≥ 0 ∀P ∈ Sm+([0, 1])d and 〈c, xε,d〉Ln ≥ ud − ε. (2.17)

For a given ε > 0, fix such a sequence {xε,d} indexed by d. We claim that {xε,d}
must have a subsequence that converges weakly to a fucntion xε ∈ Ln. Indeed, if we

let µε,d :=
l
xε,d

γ
, then for any polynomial p ∈ Rn

d [t] that is elementwise nonnegative

on [0, 1], we have |µε,d(p)| ≤
∑n

i=1

∫ 1

0
pi(t) dt. Our claim then follows from Theorem

1. It is clear by weak convergence that 〈c, xε〉Ln ≥ u∗ − ε. Moreover, for any P ∈
Sm+([0, 1]) ∩ Rm×m[t], if d ≥ deg(P ), we have 〈Fxε,d, P 〉Sm ≥ 0, or equivalently

〈( 1
xε,d

)
, F ∗P

〉
Ln+1 ≥ 0.

Hence, by taking d → ∞,
〈( 1

xε

)
, F ∗P

〉
Ln+1 ≥ 0, showing that 〈Fxε, P 〉Sm ≥ 0. By

Lemma 2.2.3, we conclude that Fxε ∈ Sm+([0, 1]) and therefore 〈c, xε〉Ln ≤ opt.
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We have just proven that for any ε > 0, there exists a feasible solution xε to the
TV-SDP in (2.1) such that

u∗ − ε ≤ 〈c, xε〉Ln ≤ opt.

This means that u∗ ≤ opt.

2.4.2 The dual problem is an SDP

In this section, we show that the infinite-dimensional problem in (2.15) can be con-
verted to an SDP of tractable size.

Theorem 8. Consider problem (2.15) at level d and with data c, A0, . . . , An, D1, . . . , Dn.
Let

d̂ := max{deg(c), max
i=1,...,n

d+ deg(Ai), max
i=1,...,n

d+ 1 + deg(Di)}.

The optimal value of problem (2.15) does not change when the space Ln is replaced
with Rn

d̂
[t]. Moreover, this optimal value is equal to the optimal value of the following

SDP
max
x∈Rn

d̂
[t]

〈c, x〉Ln

subject to αmd
∗(Fx) � 0

βmd
∗(Fx) � 0,

(2.18)

where the adjoint maps αmd
∗, βmd

∗ are as in Definition 2.4.1.

Just like our primal hierarchy, observe that the dimensions of the matrices that
need to be positive semidefinite in this SDP hierarchy grow only linearly with d. We
start with a simple and standard lemma that will help us prove the first claim of the
theorem.

Lemma 2.4.3. For any function f ∈ L1, there exists a sequence of polynomials {pd}
such that for every d ∈ N, the polynomial pd has degree d and satisfies∫ 1

0

q(t)pd(t) dt =

∫ 1

0

q(t)f(t) dt ∀q ∈ Rd[t]. (2.19)

Proof. Fix d ∈ N. Parameterize a generic univariate polynomial p(t) of degree d as

p(t) =
d∑
i=0

pit
i

and let mi :=
∫ 1

0
tif(t) dt for i = 0, . . . , d. By linearity, the equality in (2.19) is

equivalent to ∫ 1

0

tip(t) dt = mi i = 0, . . . , d.
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Let H denote the (d+1)×(d+1) matrix whose (i, j)-th entry is equal to
∫ 1

0
ti+j−2 dt =

1
i+j−1

. Equation (2.19) is therefore equivalent to(
p0, . . . , pd

)
H =

(
m0, . . . , md

)
.

It follows that this equation has a (unique) solution as the matrix H (often named
the Hilbert matrix) is known to be invertible [98].

Proof. of Theorem 8 Fix d ∈ N. Let x ∈ Ln be a feasible solution to (2.15), i.e.
satisfy

〈Fx, P 〉Sm ≥ 0 ∀P ∈ Sm+([0, 1])d. (2.20)

Notice that this expression depends on x only through its d̂ moments. More
precisely, if a function y ∈ Ln satisfies

〈q, x〉Ln = 〈q, y〉Ln ∀q ∈ Rn
d̂
[t], (2.21)

then for all P ∈ Sm+([0, 1])d,

〈Fy, P 〉Sm = 〈
(

1
y

)
, F ∗P 〉Ln+1 = 〈

(
1
x

)
, F ∗P 〉Ln+1 = 〈Fx, P 〉Sm ≥ 0.

Furthermore, 〈c, y〉Ln = 〈c, x〉Ln . By Lemma 2.4.3, there always exists a function y in
Rn
d̂
[t] that satisfies (2.21). Therefore, we can restrict the space Ln in problem (2.15)

to Rn
d̂
[t]. Now if x ∈ Rn

d̂
[t], by Proposition 2, condition (2.20) is equivalent to

〈Fx, αmd (Q1) + βmd (Q2)〉Sm ≥ 0 ∀Q1 � 0,∀Q2 � 0,

which itself is equivalent to

〈Fx, αmd (Q1)〉Sm ≥ 0 ∀Q1 � 0, and 〈Fx, βmd (Q2)〉Sm ≥ 0 ∀Q2 � 0.

By Proposition 3, this latter statement holds if and only if

〈αmd
∗(Fx), Q1〉 ≥ 0 ∀Q1 � 0, and 〈βmd

∗(Fx), Q2〉 ≥ 0 ∀Q2 � 0,

i.e.,
αmd
∗(Fx) � 0 and βmd

∗(Fx) � 0.

2.5 Applications

In this section, we present three applications of time-varying semidefinite programs
along with some numerical experiments.
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2.5.1 Time-varying Max-Flow

In our first example, we study a generalization of the classical maximum-flow problem
where the pipeline capacities are allowed to vary with time. More specifically, we are
given a graph with node set V := {1, . . . n}, and edge set E ⊆ [n]2. We take node 1
to be the source of the flow and node n to be the target. Our decision variables are
functions fij ∈ L1, for (i, j) ∈ E, with fij(t) denoting the instantaneous flow on edge
(i, j) at time t ∈ [0, 1]. We have as input functions bi,j ∈ R[t] with bij(t) denoting the
capacity of edge (i, j) at time t ∈ [0, 1].

The capacity (and nonnegativity) constraints that we need to satisfy are

0 ≤ fij(t) ≤ bij(t) ∀(i, j) ∈ E, ∀t ∈ [0, 1] a.e..

We further need to satisfy conservation of flow constraints at every node other than
the source and the target nodes:∑

j:(i,j)∈E

fij(t)−
∑

j:(j,i)∈E

fji(t) = 0 ∀i ∈ V \ {1, n}, ∀t ∈ [0, 1] a.e..

In some applications, a subset of the edges that we denote by E1 ⊆ E may not be
able to handle an instantaneous change in the flow that is too large. In other words,
we need to impose the following additional constraints:∣∣∣∣ d

dt
fij(t)

∣∣∣∣ ≤ bderiv
ij (t) ∀(i, j) ∈ E1, ∀t ∈ [0, 1] a.e., (2.22)

for some pre-specified functions bderiv
ij ∈ R[t]. We handle this by introducing a new

decision variable gij ∈ L1 for every (i, j) ∈ E1 and imposing∫ t

0

gij(s) ds−fij(t) = 0 and −bderiv
ij (t) ≤ gij(t) ≤ bderiv

ij (t) ∀(i, j) ∈ E1, ∀t ∈ [0, 1] a.e..

Moreover, we assume that because of limitations on production of the flow at the
source node, the cumulative flow going into the network up to time t cannot exceed
bcum(t) for some given function bcum ∈ R[t]. Hence, this constraint reads∫ t

0

∑
(1,j)∈E

f1j(t)dt ≤ bcum(t) ∀t ∈ [0, 1] a.e.. (2.23)

Our objective is to send as much flow as possible from the source to the target
node over the time interval [0, 1]. Hence, the overall problem, which is a time-varying
semidefinite (in fact, linear) program, reads:
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max
fij ,gij

∫ 1

0

∑
(1,j)∈E

f1j(t) dt

0 ≤ fij(t) ≤ bij(t) ∀(i, j) ∈ E∑
j:(i,j)∈E

fij(t)−
∑

j:(j,i)∈E
fji(t) = 0 ∀i ∈ V \ {1, n}∫ t

0
gij(s) ds− fij(t) = 0 ∀(i, j) ∈ E1

−bderiv(t) ≤ gij(t) ≤ bderiv(t) ∀(i, j) ∈ E1∫ t
0

∑
(1,j)∈E

f1j(s) ds ≤ bcum(t)


∀t ∈ [0, 1] a.e..

(2.24)

1

2

3

4

5

6

7

8

9

Figure 2.2: An instance of the time-varying max-flow problem. The edge capacities
bij(t), over the time interval [0, 1], are plotted with red dotted lines. The optimal
polynomial flow fij(t) of degree at most 10 is plotted on each edge with solid blue
lines.
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As a numerical example, we consider the network in Figure 2.2 with capacities
bij(t) plotted with red dotted lines on each edge (i, j). Each of these polynomials bij
is a nonnegative polynomial of degree 3 that is generated as follows

bij(t) = t(a
(1)
ij + a

(2)
ij t)2 + (1− t)(a(3)

ij + a
(4)
ij t)2, (2.25)

where a
(k)
ij are generated independently and uniformly at random from [−1, 1]. We

take E1 = {(1, 4), (5, 9)}, bderiv(t) = 1
2
, and bcum(t) = t2.

Using the machinery of Section 2.3, we solve semidefinite programs (as given in
Theorem 6) that find the best polynomial solution of degree d ∈ {2, 3, . . . , 10} to the
TV-SDP in (2.24). The optimal values of these problems, which provide improving
lower bounds on the optimal value of problem (2.24), are reported in the first row of
Table 2.1. We also plot the best polynomial solution of degree 10 on each edge of the
graph in Figure 2.2 with solid blue lines. Figure 2.3 shows that this solution satisfies
the constraints in (2.22) and (2.23).

(a) The cumulative flow∑
(1,i)∈E f1i(t) at time t going

through the network and the max-
imum flow available bcum(t) up to
that time.

(b) The derivative of the flow go-
ing through the edges in E1 and
the maximum rate of change bderiv(t)
and −bderiv(t) allowed for the flow.

Figure 2.3: Plots demonstrating that the constraints in (2.22) and (2.23) are satisfied
by the best polynomial solution of degree 10 for (2.24).

We also use the machinery of Section 2.4 to solve the dual problems in (2.15) in
order to get upper bounds on the optimal value of the TV-SDP in (2.24). By Theorem
8, the dual problem at level d is equivalent (after some rewriting) to the following
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SDP:

max
fij ,gij∈Rd+1[t]

∫ 1
0

∑
(1,j)∈E

f1j(t)dt

α1
d
∗
(bij − fij) � 0, β1

d
∗
(bij − fij) � 0 ∀(i, j) ∈ E

α1
d
∗
(fij) � 0, β1

d
∗
fij � 0 ∀(i, j) ∈ E

α1
d
∗
( ∑
j:(i,j)∈E

fij −
∑

j:(j,i)∈E
fji

)
= 0, β1

d
∗
( ∑
j:(i,j)∈E

fij −
∑

j:(j,i)∈E
fji

)
= 0 ∀i ∈ V \ {1, n}

α1
d
∗
(∫ t

0 gij(s) ds− fij
)

= 0, β1
d
∗
(∫ t

0 gij(s) ds− fij
)

= 0 ∀(i, j) ∈ E1

α1
d
∗ (
bderiv − gij

)
� 0, β1

d
∗ (
bderiv − gij

)
� 0 ∀(i, j) ∈ E1

α1
d
∗ (
bderiv + gij

)
� 0, β1

d
∗ (
bderiv + gij

)
� 0 ∀(i, j) ∈ E1

α1
d
∗
(
bcum −

∫ t
0

∑
(1,j)∈E

f1j(s)

)
� 0, β1

d
∗
(
bcum −

∫ t
0

∑
(1,j)∈E

f1j(s)

)
� 0.

(2.26)

The optimal value of this problem for different values of d is reported in the second
row of Table 2.1.

d 2 3 4 5 6 7 8 9 10
lower bound 0.7201 0.7952 0.8170 0.8267 0.8274 0.8277 0.8279 0.8281 0.8282
upper bound 0.8700 0.8574 0.8541 0.8455 0.8446 0.8431 0.8421 0.8419 0.8413

Table 2.1: Upper and lower bounds on the optimal value of the time-varying max-
flow problem in (2.24). In the first row, we report the objective value of the best
polynomial solution of degree d. In the second row, we report the optimal value of
the dual problem in (2.15) at level d.

Note from the two tables that the objective value of the degree-10 polynomial
solution we have found is guaranteed to be within 2% of the best objective value
possible. The running time of our largest SDPs on a standard laptop with the solver
MOSEK [22] is in the order of a second. If we increase the degree much beyond 10,
our solver runs into numerical issues. This is not surprising as we are formulating
our SDPs using the standard monomial basis. Much improvement is possible on the
implementation front using e.g. the ideas in [132, 153, 152, 154]. Such implementation
improvements are left for future work.

2.5.2 A time-varying wireless coverage problem

In our second example, we present an application to wireless coverage of a targeted
geographical region which moves over time. This is a time-varying generalization of
problems considered in [58, 59, 60, 7]. In this setting, we have nT wireless electro-
magnetic transmitters located at known locations T̄i = (x̄i, ȳi) on the plane. Each
transmitter i ∈ {1, . . . , nT} is an omnidirectional power source providing a signal
strength of Ei(t, x, y) at time t in location (x, y) on the plane. Laws of electromag-
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netic wave propagation stipulate that

Ei(x, y, t) =
ci(t)

(x− x̄i)2 + (y − ȳi)2
,

where ci(t), which is our decision variable, is the transmission power of the transmitter
i at time t. There are nR regions on the plane that move over time and that need
to be covered with sufficient signal strength. For j ∈ {1, . . . , nR} and t ∈ [0, 1], we
define each such region Bj(t) with kj polynomial inequalities:

Bj(t) := {(x, y) ∈ R2| gt,j,k(x, y) ≥ 0, k = 1, . . . , kj}.

Here, for j = 1, . . . , nR, k = 1, . . . , kj, gt,j,k(x, y) is a polynomial in (x, y) whose
coefficients depend on t. We further assume that for j = 1, . . . , nR and for all t ∈ [0, 1],

gt,j,1(x, y) = r2 − x2 − y2

for some large enough scalar r.
Our goal is to ensure that for all time t ∈ [0, 1], the strength of the signal in all

regions Bj(t) is at least a given threshold C. In other words, our constraints in this
problem are

E(x, y, t) :=
∑nT

i=1Ei(x, y, t) ≥ C ∀(x, y) ∈ Bj(t), ∀j ∈ {1, . . . , nR}
ci(t) ≥ 0 ∀i ∈ {1, . . . , nT}

}
∀t ∈ [0, 1] a.e..

(2.27)
Our objective is to minimize the total cost of power generation, which is directly
proportional to ∫ 1

0

nT∑
i=1

ci(t) dt.

Notice that the first inequality in (2.27) is an inequality involving rational func-
tions. Upon taking common denominators, we can reformulate this constraint as

pt(x, y) := −C
nT∏
i=1

[(x− x̄i)2 + (y − ȳi)2] +

nT∑
i=1

ci(t)
∏
k 6=i

[(x− x̄k)2 + (y − ȳk)2] ≥ 0

∀(x, y) ∈ Bj(t), ∀j = 1, . . . , nR,∀t ∈ [0, 1] a.e..
(2.28)

Note that pt(x, y) is a polynomial in (x, y) whose coefficients depend on t. Let vd̃
denote the vector of monomials in (x, y) of degree up to d̃, i.e.

vd̃ := vd̃(x, y) = (1, x, . . . , xd̃, xy, . . . , xd̃−1y, . . . , yd̃)T .
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d 2 3 4 5 6 7 8 9 10
+∞ 56.64 54.52 54.43 54.14 54.14 53.95 53.94 53.93

Table 2.2: Objective values of optimal polynomial solutions of degree d to the time-
varying wireless coverage problem in (2.30).

It is easy to check that for fixed j ∈ {1, . . . , nR}, t ∈ [0, 1], existence of positive

semidefinite matrices P
(j)
0 (t), . . . , P

(j)
kj

(t) satisfying the polynomial identity

pt(x, y) = vd̃(x, y)TP
(j)
0 (t)vd̃(x, y) +

kj∑
k=1

vd̃(x, y)TP
(j)
k (t)vd̃(x, y)gt,j,k(x, y) (2.29)

implies the constraint in (2.28). Conversely, for every fixed j ∈ {1, . . . , nR} and t ∈
[0, 1], Putinar’s Positivstellensatz [39] implies that if the constraint in (2.28) is satisfied

strictly, one can always find a nonnegative integer d̃ and matrices P
(j)
0 (t), . . . , P

(j)
kj

(t)

that satisfy (2.29).
For any fixed d̃ ∈ N, our overall problem is the following TV-SDP:

min
ci,P

(j)
k

∫ 1
0

∑nT
i=1 ci(t) dt

ci ∈ L1 i = 1, . . . , nT

P
(j)
k ∈ S

(d̃+1)(d̃+2)
2 k = 0, . . . , kj , j = 1, . . . , nR

ci(t) ≥ 0 i = 1, . . . , nT

pt(x, y) = vT
d̃
P

(j)
0 (t)vd̃ +

∑kj
k=1 gt,j,k(x, y)vT

d̃
P

(j)
k (t)vd̃ ∀(x, y) ∈ R2, j = 1, . . . , nR

P
(j)
k (t) � 0 k = 0, . . . , kj , j = 1, . . . , nR

 ∀t ∈ [0, 1] a.e..

(2.30)

Note that constraint (2.28) that appears in the TV-SDP in (2.30) is an equality
between two polynomials in (x, y). Since two polynomials are equal if and only if
their coefficients match, this constraint can be rewritten as a finite number of linear
equations in our decision variables.

We now solve a numerical example with the following data:

C = 1, nT = 2, T̄1 = (0, 0), T̄2 = (5, 5), nR = 2, k1 = k2 = 2,

r = 10, gt,1,2(x, y) = 1−
(
(x− 3t+ 3)2 + (y − 5t)2

)
, gt,2,2(x, y) = 1−

(
x2 + (y − 5t+ 1))2

)
.

In other words, our two regions are disks of unit radius whose centers move with time.
We start by finding polynomial solutions c1, c2 ∈ Rd[t] that satisfy the nonnega-

tivity and the signal strength requirements in (2.27). For this, we solve the TV-SDP
in (2.30) with d̃ = 1. Using the methodology of Section 2.3.2, we solve semidefinite
programs (as given in Theorem 6) to obtain the best polynomial solution of degree
d ∈ {2, 3, . . . , 10}. The objective values of the optimal solutions are reported in Table
2.2.
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Note that if we do not allow the solution to depend on time (or even if we allow it
to depend on time as a polynomial of degree less than 3), then the TV-SDP in (2.30)
becomes infeasible. As we increase the degree, the problem becomes feasible and the
objective value improves.

Figure 2.4 demonstrates a sanity check on our solution at six snapshots of time.
Indeed, the two regions B1(t) and B2(t) are receiving a signal of strength of at least
1.

Figure 2.4: Six time snapshots—at t = 0, 1
5
, 2

5
, 3

5
, 4

5
, 1—of the wireless coverage ob-

tained by the best polynomial solution of degree 10. The two time-varying regions
B1(t) and B2(t) that need to receive a signal strength of at least 1 at all times t ∈ [0, 1]
are colored in black. The heatmap in the background demonstrates the signal strength
at each location with light yellow representing high and dark blue representing low
signal strengths. The region delimited by the red curves is guaranteed to receive a
signal strength of at least 1.

To have an idea of how far our best polynomial solution of degree 10 is from being
optimal to the TV-SDP in (2.30), we solve the dual problem (2.15) presented in
Section 2.4. After some rewriting, this dual problem at level d becomes the following
SDP:

min
ci,P

(j)
k of degree d+ 2

∫ 1
0

∑nT
i=1 ci(t) dt

subject to

α1
d
∗
(ci) � 0, β1

d
∗
(ci) � 0 i = 1, . . . , nT

α1
d
∗
(
pt(x, y)− vT

d̃
P

(j)
0 (t)vd̃ +

∑kj
k=1 gt,j,k(x, y)vT

d̃
P

(j)
k (t)vd̃

)
= 0 ∀(x, y) ∈ R2, j = 1, . . . , nR

β1
d
∗
(
pt(x, y)− vT

d̃
P

(j)
0 (t)vd̃ +

∑kj
k=1 gt,j,k(x, y)vT

d̃
P

(j)
k (t)vd̃

)
= 0 ∀(x, y) ∈ R2, j = 1, . . . , nR

αmd
∗(P

(j)
k ) � 0, βmd

∗(P
(j)
k ) � 0 k = 1, . . . , nT , j = 1, . . . , nR,

(2.31)
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where m = (d̃+1)(d̃+2)
2

. Note that the second and third set of constraints are requiring
a polynomial matrix in (x, y) whose coefficients depend linearly on the decision vari-
ables to be identically zero. Once again, this is simply a finite numbers of equality
constraints.

The optimal value of problem (2.31) with d = 10 is equal to 52.66. This tells us
that the objective value of the degree-10 polynomial solution reported in Table 2.2 is
within 2.5% of the optimal value of the TV-SDP in (2.30).

2.5.3 Bi-objective SDP and Pareto curve approximation

In our third and last example, we formulate a bi-objective (non time-varying) semidef-
inite program as a time-varying SDP.

A bi-objective semidefinite program is a standard SDP that involves two objective
functions. More precisely, we are concerned with the simultaneous maximization of
two objective functions

〈c1, x〉 and 〈c2, x〉

over the feasible set

F := {x ∈ Rn | Fx := A0 +
n∑
i=1

xiAi � 0},

where A0, . . . , An are given by m × m symmetric matrices. In general there exists
no single solution x that maximizes both objective functions at the same time. As a
trade-off, one is interested in solving the following problem

y(t) :=
max
x∈Rn

〈c1, x〉
subject to 〈c2, x〉 ≥ t and Fx � 0,

(2.32)

for various values of t. In the case where F is compact, we can without loss of
generality take t to vary in [0, 1] after a possible rescaling. This gives rise to the
following trade-off curve, which we refer to as the Pareto curve:

PC := {(t, y(t)) | t ∈ [0, 1]}.

Any point on this curve tells us that in order to improve the first objective function
beyond y(t), the second objective needs to necessarily be smaller than t. We are
interested in a one-shot approximation of the entire Pareto curve as oppposed to
sampling points on it and solving several independent SDPs. Such an approach has
been taken before for multi-objective LPs in [84], and for bi-objective polynomial
optimization problems in [136].

To get the Pareto curve in one shot, we can solve the following TV-SDP

max
x∈Ln

∫ 1

0
〈c1, x(t)〉dt

subject to
〈c2, x(t)〉 ≥ t
Fx(t) � 0

}
∀t ∈ [0, 1] a.e..

(2.33)

42



If x ∈ Ln is any feasible solution to this TV-SDP, then

〈c1, x(t)〉 ≤ y(t) ∀t ∈ [0, 1] a.e..

In other words, any feasible solution to the TV-SDP in (2.33) gives a lower to the
Pareto curve almost every where on [0, 1]. Furthermore, if xopt is an optimal solu-
tion to the same TV-SDP (whose existence is guaranteed by Theorem 3 when F is
compact), then

〈c1, x
opt(t)〉 = y(t) ∀t ∈ [0, 1] a.e..

Let xd ∈ Rn
d [t] be an optimal solution to (2.33) when the search space is restricted

to polynomials of degree at most d. We know from Theorem 4 that, under the strict
feasibility assumption2 in Definition 2.3.1,∫ 1

0

y(t)− 〈c1, x
d(t)〉 dt→ 0 as d→∞.

Moreover, the optimal value of the dual problem of the TV-SDP in (2.33) at level d,
as described in Section 2.4, gives an upper bound on the area under the Pareto curve.
Under the assumption that the set F is bounded in the infinity norm by γ, then once
the constraint ‖x‖∞ ≤ γ is added to the TV-SDP in (2.33), the optimal values of the
associated dual problems converge to the area under the Pareto curve as d→∞ (see
Theorem 7).

As a concrete example of a bi-objective SDP, we consider the Markowitz portfolio
selection problem [139]. We model n tradable assets as a nondegenerate n-variate
Gaussian random variable with average return r ∈ Rn and (positive definite) co-
variance matrix Σ ∈ Sn. Given the data r and Σ as input, the goal is to choose a
portfolio (i.e. an allocation of xi fraction of our total funds to asset i ∈ {1, . . . , n})
that maximizes the average return rTx while simultaneously minimizing the variance
xTΣx.

We can formulate this problem as a bi-objective optimization problem, with vari-
ables (

u, x1, . . . , xn
)T ∈ Rn+1,

constraints

x ≥ 0,
n∑
i=1

xi ≤ 1, xTΣx ≤ u,

and two objective functions
rTx and − u.

2In this setup, this assumption is equivalent to existence of positive scalar ε and a vector xs ∈ Rn
such that Fxs � εI and 〈c2, xs〉 ≥ 1 + ε.
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The Pareto curve is therefore given by {(t, y(t)) | t ∈ [0, 1]}, where

y(t) := max
x∈Rn,u∈R

rTx

subject to x ≥ 0∑n
i=1 xi ≤ 1

u ≤ t(
u xT

x Σ−1

)
� 0.

(2.34)

The TV-SDP in (2.33) that gives this Pareto curve in one shot can therefore be
written as

max
x∈Ln,u∈L1

∫ 1

0
rTx(t)dt

subject to
x(t) ≥ 0∑n

i=1 xi(t) ≤ 1
u(t) ≤ t(
u(t) x(t)T

x(t) Σ−1

)
� 0

 ∀t ∈ [0, 1] a.e..

(2.35)

We numerically solve an example with n = 5 assets,

r =
(
0.4170, 0.7203, 0.0001, 0.3023, 0.1468

)T
,Σ =

 6.0127 −0.7381 −0.5441 −4.9189 1.7855
−0.7381 9.8904 −0.7946 0.2481 −5.5214
−0.5441 −0.7946 5.1961 −3.6240 1.5820
−4.9189 0.2481 −3.6240 10.4637 1.7840
1.7855 −5.5214 1.5820 1.7840 15.8475

 .

The entries of the vector r were generated independently from the uniform distri-
bution over [0, 1]. The matrix Σ was obtained by first generating a 5 × 5 matrix V
whose entries were sampled independently from the uniform distribution over [0, 3],
and then letting Σ = V V T .

Using Theorem 6, we solve a semidefinite program that finds the best the best
polynomial solution of degree than 10 to the TV-SDP in (2.33). The objective value
that we achieve is 0.3210, and the resulting optimal solution xpoly,10 ∈ R5

10[t] is plotted
in Figure 2.5b. In Figure 2.5a, we plot rTxpoly,10(t), which is a point-wise lower
approximation to the true Pareto curve. We also find eleven equally-spaced points
on the exact Pareto curve, by solving the problem in (2.34) at t ∈ {0, 0.1, . . . , 1}.
Notice that our approximation to the Pareto curve obtained from the best polynomial
solution of degree 10 is almost perfect at these eleven sample points.

To get a formal upper bound on the area enclosed between {(t, rTxpoly,10(t)) | t ∈
[0, 1]} and the true Pareto curve {(t, y(t)) | t ∈ [0, 1]}, we solve the dual problem
(2.15) presented in Section 2.4. After some rewriting, this dual problem at level d is
equivalent to the following SDP (cf. Theorem 8):
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(a) The return rTxpoly,10(t) obtained
by best polynomial solution of de-
gree ≤ 10.

(b) The allocations xpoly,10
i (t) for the

different assets obtained by the best
polynomial solution of degree ≤ 10.

Figure 2.5: The optimal polynomial solution of degree less than 10 and its associated
approximation to the Pareto curve for the Markowitz portfolio selection problem.

max
x∈Rnd [t],u∈Rd[t]

∫ 1

0
rTx(t)dt

subject to

α1
d
∗
(xi) � 0, β1

d
∗
(xi) � 0 i = 1, . . . , n

α1
d
∗
(1−

∑n
i=1 xi) � 0, β1

d
∗
(1−

∑n
i=1 xi) � 0

α1
d
∗
(t− u(t)) � 0, β1

d
∗
(t− u(t)) � 0

αn+1
d

∗
(
u(t) x(t)T

x(t) Σ−1

)
� 0, βn+1

d

∗
(
u(t) x(t)T

x(t) Σ−1

)
� 0.

(2.36)

The optimal value of problem (2.36) with d = 10 is equal to 0.3232, which tells
us that ∫ 1

0

(
y(t)− rTxpoly,10(t)

)
dt ≤ 1

100

∫ 1

0

y(t) dt.

2.6 Future Research Directions

We end by mentioning a few questions that are left for future research. We believe
there is much research to be done to extend some of the fundamental structural
results from the continuous linear programming literature (e.g., results related to
duality theory or the structure of optimal solutions) to the case of TV-SDPs. As
a concrete example, we would be interested in knowing to what extent the duality
theory of Pullan [170] can carry over to the TV-SDP setting.

Closer to the focus of this chapter, we have shown in Theorem 4 that under the
strict feasibility assumption in Definition 2.3.1, the sequence of objective values of the
best polynomial solution of degree d converges to the optimal value of the TV-SDP
as d→∞. If we are interested in a feasible solution with (additive or multiplicative)
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error bounded by α, how large should we take d to be as a function of α and other
problem parameters? The answer to this question would likely have a dependence on
the scalar ε in Definition 2.3.1. Is there an efficient method for obtaining a lower bound
on ε, or even checking the strict feasibility assumption? Lastly, we are interested in
knowing whether the strict feasibility assumption in Theorem 4 can be weakened, for
instance, to existence of a feasible polynomial solution.

Similarly in Theorem 7, we have shown that under a boundedness assumption,
the sequence of optimal values of our dual problem at level d converges from above to
the optimal value of the TV-SDP. It would be interesting to study the convergence
rate of this sequence. We also would like to know if the boundedness assumption
is needed for convergence, and whether the bound constraints need to be explicitly
added to the TV-SDP as we do now.

Finally, at a more basic level, what is the complexity (in the Turing model of
computation) of testing feasibility of a continuous linear program with polynomially-
varying data? Here, the maximum degree of the polynomials in the data can either
be fixed or part of the input. The reason we do not ask this complexity question for
TV-SDPs is that the question is well known to be open even for standard SDPs (see
e.g. [66]).
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Chapter 3

On Sum of Squares Representation
of Convex Forms and Generalized
Cauchy-Schwarz Inequalities

3.1 Introduction and Main Result

The set Hn,k of homogeneous real polynomials (forms) in n variables and of degree
k is a central subject of study in algebraic geometry. When the degree k =: 2d is
even, three convex cones inside Hn,k have received considerable interest. The cone of
nonnegative forms

Pn,2d := {p ∈ Hn,2d | p(x) ≥ 0 for all x ∈ Rn},

the cone of sum of squares (sos) forms

Σn,2d := {p ∈ Hn,2d | p =
∑
i

q2
i for some forms qi ∈ Hn,d},

and the cone of convex forms

Cn,2d := {p ∈ Hn,2d | ∇2p(x) � 0 for all x ∈ Rn},

where ∇2p(x) stands for the Hessian of the form p at x, and the symbol � stands for
the partial ordering generated by the cone of positive semidefinite matrices.

The systematic study of the interplay between the cones Pn,2d and Σn,2d was
undertaken by Hilbert at the end of the nineteenth century, when he showed that
these two cones are different unless n ≤ 2, 2d ≤ 2 or n = 3, 2d = 4 [97]. Even though
Hilbert’s work provided a strategy for constructing nonnegative forms that are not
sos for the smallest number of variables and degrees possible (i.e., forms in P3,6 \Σ3,6

and P4,4 \ Σ4,4), it took almost eighty years for the first explicit examples of such
forms to be found by Motzkin and Robinson [143, 177, 174]. See [175] for a more
thorough discussion of the history of this problem.
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The relationship between Cn,2d and Σn,2d is much more complicated and it was
an open problem for some time whether Cn,2d ⊆ Σn,2d for all n and d. (The reverse
inclusion is of course false; e.g., x2y2 ∈ Σ2,4 \ C2,4.) Note however, that we trivially
have Cn,2d ⊆ Pn,2d since a global minimum of a convex form is always at the origin
where the form and its gradient vanish.

From an applied and computational perspective, the study of the interplay be-
tween the notions of convexity and being a sum of squares could enhance our un-
derstanding of existing polynomial optimization algorithms. Concretely, consider the
problem of finding the minimum value p∗ that a convex (not necessarily homoge-
neous1) polynomial p takes on Rn. To tackle this problem, there exists at least two
distinct families of algorithms. The first family is comprised of variants of descent
methods which are guaranteed to converge to a global minimizer in the presence of
convexity, but fail to take advantage of the algebraic structure of the objective func-
tion given by the polynomial p. Alternatively, the well-known machinery of “sum of
squares relaxation” [158, 157] offers a hierarchy of semidefinite programs whose opti-
mal values monotonically converge to p∗. For instance, the first level of this hierarchy
gives a lower bound psos on p∗:

psos := max
γ∈R

γ s.t. p− γ is sos.

However, this second family of algorithms makes no assumptions about convexity of
the polynomial p, and as a result, does not explicitly exploit this property. Now, if
we knew a priori that the convex polynomial p− γ is sos whenever it is nonnegative,
then the first level of this relaxation becomes exact ; i.e., p∗ = psos.

Blekherman has recently shown that for any fixed degree 2d ≥ 4, as the number
of variables n goes to infinity, one encounters considerably more convex forms than
sos forms [44]. Remarkably however, there is not a single known example of a convex
form that is not sos. Due to Hilbert’s characterization of the cases of equality between
the cone of nonnegative forms and the cone of sos forms, the smallest cases where
one could have hope of finding such an example correspond to quaternary quartics
(n = 4, 2d = 4) and ternary sextics (n = 3, 2d = 6). The goal of this chapter prove
that no such example exists among quaternary quartics.

Theorem 3.1.1. Every convex quarternary quartic is sos, i.e., C4,4 ⊆ Σ4,4.

Furthermore, we show that if a conjecture of Blekherman related to the so-called
Cayley-Bacharach relations is true, no convex form which is not sos can exist among
ternary sextics either, i.e., C3,6 ⊆ Σ3,6.

A possible plan of attack to show that a convex form is sos is to show that
it is sos-convex. This concept, introduced by Helton and Nie [93], is an algebraic
sufficient condition for convexity which also implies the property of being sos. This
plan would not be successful for our purposes however, since there exist explicit

1While the properties of being nonnegative and sum of squares are preserved under the homoge-
nization operation p(x)→ ydeg(p)p(x

y ), the property of convexity is not in general. For instance, the

polynomial x2 − 1 is convex, but its homogenization x2 − y2 is not.
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examples of convex forms that are not sos-convex for both cases n = 4, 2d = 4 and
n = 3, 2d = 6 [9]. In fact, the problem of characterizing for which degrees 2d and
number of variables n sos-convexity is also a necessary condition for convexity, has
been completely solved in [9]. The authors prove that this is the case if and only
if n ≤ 2, 2d ≤ 2 or n = 3, 2d = 4, i.e., the same cases for which Pn,2d = Σn,2d as
characterized by Hilbert, albeit for different reasons.

Our proof strategy relies instead on an equivalence due to Blekherman [45] between
the membership p ∈ Σ4,4 for a nonnegative form p, and the following bounds on point
evaluations of the form p:

√
p(u1) ≤

8∑
i=2

√
p(ui) and

√
2
√
|p(z)|+ Re (p(z)) ≤

8∑
i=3

√
p(vi), (3.1)

where the real vectors vi and ui and the complex vector z come from intersections of
quadratic forms (see theorem 3.4.2 for a more precise statement). This equivalence
is explained in section 3.4. We show in section 3.5 that any quaternary quartic form
p that satisfies the two inequalities

∀ x,y ∈ R4 Qp(x,y) ≤
√
p(x)p(y) and ∀ z ∈ C4 |p(z)| ≤ Qp(z, z̄), (3.2)

where Qp(x,y) := 1
12

yT∇2p(x)y, also satisfies these bounds. These inequalities can
be thought of as a generalization of the Cauchy-Schwarz inequality, valid for any n×n
positive semidefinite matrix Q:

∀ x,y ∈ Rn xTQy ≤
√

xTQx · yTQy.

We show that convex quaternary quartic forms satisfy the inequalities in eq. (3.2), and
are therefore sos. In fact, in section 3.3, we present generalizations of the Cauchy-
Schwarz inequality that apply to convex forms of any degree and any number of
variables. We believe that these inequalities could be of independent interest. In
section 3.6, we discuss a possible extension of our proof technique to the case of
ternary sextics.

3.2 Background and Notation

We denote the set of positive natural numbers, real numbers, and complex numbers
by N, R, and C respectively. We denote by (e1, . . . , en) the canonical basis of Rn.
We denote by i the imaginary number

√
−1, and by z̄, |z|, Re (z), and Im (z) the

complex conjugate, the modulus, the real part and the imaginary part of a complex
number z respectively.

3.2.1 Notation for differential operators

We denote by ∂u the partial differentiation operator in the direction of u ∈ Cn, i.e.,
∂up(x) is the limit of the ratio (p(x+tu)−p(x))/t as t→ 0 for all n-variate polynomial

49



functions p and all vectors x ∈ Cn. The gradient operator (∂e1 , . . . , ∂en)T is denoted
by ∇, the Hessian operator ∇∇T is denoted by ∇2, and the Laplacian operator
∂2
e1

+ · · · + ∂2
en is denoted by ∆. For a form p ∈ Hn,2d and vectors x1, . . . ,xn ∈

Cn, we denote by p(∂x1 , . . . , ∂xn) the differential operator obtained by replacing the
indeterminate xk with ∂xk for k = 1, . . . , n in the expression p(x1, . . . , xn). We note
that taking k partial derivatives of a k-degree form results in a constant function. As
a consequence, we consider the quantity p(∂x1 , . . . , ∂xn)q to be a scalar for all forms
p and q in Hn,k.

3.2.2 Euler’s identity

Euler’s identity (see e.g., [121]) links the value that a form p ∈ Hn,k takes to its
gradient as follows :

∀x ∈ Rn k p(x) = xT∇p(x).

By applying this identity to the entries of the gradient ∇p, one obtains the following
relationship between a form and its Hessian:

∀x ∈ Rn k(k − 1) p(x) = xT∇2p(x)x.

It is readily seen from this identity that every convex form is nonnegative; i.e., for
every d ∈ N, Cn,2d ⊆ Pn,2d.

3.2.3 Tensors and outer product

A tensor of order k is a multilinear form T : (Rn)k → R. The tensor T is called
symmetric if T (x1, . . . ,xk) = T (xi1 , . . . ,xik) for every x1, . . . ,xk ∈ Rn and every
permutation (i1, . . . , ik) of the set {1, . . . , k}. The outer product of two vectors x and
y is denoted by x⊗y. The symmetric outer product 1

2
(x⊗y + y⊗x) of two vectors

x and y is denoted by x · y. The (symmetric) outer product of a vector x with itself
k times is denoted by xk. For any tensor T of order k, the quantity T (x1, . . . ,xk)
is a linear function of the outer product x1 ⊗ · · · ⊗ xk of the vectors x1, . . . ,xk. If
the tensor T is assumed to be symmetric, then this quantity only depends on the
symmetric outer product x1 . . .xk.

3.2.4 Forms and symmetric tensors

For every form p ∈ Hn,k, there exists a unique symmetric tensor Tp of order k such
that

∀x ∈ Rn p(x) = Tp(x, . . . ,x︸ ︷︷ ︸
k times

).

This is known as the polarization identity [72]. The tensor Tp is related to the deriva-
tives of the form p via the relation

∀x1, . . . ,xk ∈ Rn k! Tp(x1, . . . ,xk) = ∂x1 . . . ∂xkp, (3.3)
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and is related to the coefficients of the form p via the identity

pi1,...,in =

(
k

i1, . . . , ik

)
Tp(e1, . . . , e1︸ ︷︷ ︸

i1 times

, . . . , en, . . . , en︸ ︷︷ ︸
in times

), (3.4)

where pi1,...,in is the coefficient multiplying the monomial xi11 . . . x
in
n in p.

When k =: 2d is even, we define the polynomial Qp via the formula

∀x,y ∈ Rn Qp(x,y) := Tp(x, . . . ,x︸ ︷︷ ︸
d times

,y, . . . ,y︸ ︷︷ ︸
d times

). (3.5)

We call the polynomial Qp the biform associated to p. We note that Qp is a form of
degree 2d in the 2n variables (x,y) that is homogeneous of degree d in x (resp. y)
when y (resp. x) is fixed.

3.2.5 Inner product on Hn,2d

We equip the vector space Hn,2d with the following inner product

∀p, q ∈ Hn,2d 〈p, q〉 := p(∂e1 , . . . , ∂en)q,

the so-called Fischer inner product [77]. This inner product can also be expressed in
a more symmetric way in terms of the coefficients of the forms p and q as follows

∀p, q ∈ Hn,2d 〈p, q〉 = (2d)!
∑

i1+···+in=2d

(
2d

i1, . . . , in

)−1

pi1,...,in qi1,...,in .

By the Riesz representation theorem, for every linear form ` : Hn,2d → R, there exists
a unique form p ∈ Hn,2d satisfying

∀q ∈ Hn,2d `(q) = p(∂e1 , . . . , ∂en)q,

and we write ` = p(∂e1 , . . . , ∂en).
A particularly important special case of linear forms is given by tensor evaluations.

The linear form given by p 7→ Tp(x1, . . . ,x2d) for some fixed vectors x1, . . . ,x2d is
identified with the differential operator 1/(2d)! ∂x1 . . . ∂x2d

. For instance,

· The point evaluation map at x ∈ Cn given by p 7→ p(x) is equal to the differ-
ential operator 1

(2d)!
∂2d
x .

· The map p 7→ Qp(x,y) is equal to the differential operator 1
(2d)!

∂dx∂
d
y for all

vectors x and y in Cn.

· The map p 7→ Qp(z, z̄) is equal to the differential operator 1
(2d)!

(∂2
x + ∂2

y)d for
any vector z in Cn whose real and imaginary parts are given by x and y. This
follows from the fact that ∂z = ∂x + i∂y and ∂z̄ = ∂x − i∂y.
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3.2.6 Convex duality

We denote the dual of a convex cone Ω ⊆ Hn,2d by

Ω∗ := {` : Hn,2d → R | ` is linear and for all p ∈ Ω `(p) ≥ 0}.

Recall that C∗n,2d = cone{`x,y | x,y ∈ Rn}, where `x,y(p) := yT∇2p(x)y and cone(S)
denotes the conic hull of a set S [176]. By using the pairing between linear forms acting
on the vector space Hn,2d and elements of this vector space described in section 3.2.5,
we can write C∗n,2d = cone{(∂y)2(∂x)2d−2 | x,y ∈ Rn}. For example, when n = 2, if
we denote ∂e1 and ∂e2 by ∂x and ∂y respectively, then

C∗2,2d =

{
N∑
k=1

(αk∂x + βk∂y)
2(γk∂x + δk∂y)

2d−2 | N ∈ N and αk, βk, γk, δk ∈ R

}
.

(3.6)

3.3 Generalized Cauchy-Schwarz Inequalities for

Convex Forms

The Cauchy-Schwarz inequality states that for any n×n positive semidefinite matrix
Q,

∀x,y ∈ Rn xTQy ≤
√

xTQx · yTQy.

When the vectors x and y are complex and conjugate of each other, i.e. when
x = ȳ =: z, the inequality reverses as follows:

∀z ∈ Cn
√

zTQz · z̄TQz̄ ≤ zTQz̄.

This inequality is well-defined since the quantity appearing on the left-hand side is
a nonnegative number as zTQz · z̄TQz̄ = |zTQz|2, and the complex number on the
right-hand side is a real number because it is equal to its conjugate.

The condition that the matrix Q is positive semidefnite can be restated equiva-
lently in terms of convexity of the quadratic form p(x) := xTQx. In the following
theorem, we present a generalization of these inequalities for convex forms of higher
degree.

Theorem 3.3.1 (Generalized Cauchy-Schwarz inequalities (GCS)). For any convex
form p in n variables and of degree 2d, we have

∀x,y ∈ Rn Qp(x,y) ≤ Ad
√
p(x)p(y), (3.7)

and
∀z ∈ Cn |p(z)| ≤ Bd Qp(z, z̄), (3.8)

where Qp is the biform associated with p and defined in eq. (3.5), and Ad and Bd are
universal positive constants depending only on the degree 2d.
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Proof. See section 3.3.1.

We emphasize that the constants Ad and Bd appearing in the GCS inequalities
depend only on the degree 2d, and not on the number of variables n. Furthermore,
for the purposes of this chapter, we need to find the smallest constants that make
these GCS inequalities hold for quartic and sextic forms, i.e., when d = 2 and d = 3.
This motivates the following definitions for all d ∈ N:

A∗d := inf
A≥0

A s.t. ∀n ∈ N, ∀p ∈ Cn,2d, ∀x,y ∈ Rn Qp(x,y) ≤ A
√
p(x)p(y),

B∗d := inf
B≥0

B s.t. ∀n ∈ N, ∀p ∈ Cn,2d, ∀z ∈ Cn |p(z)| ≤ BQp(z, z̄).

(3.9)
The “inf” in these definitions is actually a “min” since the inequality symbol “≤”
appearing in the GCS inequalities is not strict. Moreover, the constants A∗d and B∗d
are bounded below by 1 for all d ∈ N. This is easily seen by, e.g., taking n = 1,
x = y = z = 1, and considering the (univariate) convex form p(x) := x2d.

Before further discussion of the values of the constants A∗d and B∗d , we present
in the following two remarks new interpretations of the GCS inequalities that do no
involve the biform Qp.

Remark 4. In view of the identification of differential operators with linear forms
discussed in section 3.2.5, the generalized Cauchy-Schwarz inequality in eq. (3.7) can
be written in terms of mixed derivatives as follows:

∀x,y ∈ Rn ∂dx∂
d
yp ≤ Ad

√
∂2d
x p · ∂2d

y p,

where p is any convex form of degree 2d. Similarly, the second Generalized Cauchy-
Schwarz inequality in eq. (3.8) can be written as

∀z ∈ Cn |∂2d
z p| ≤ Bd ∂

d
z∂

d
z̄ p,

for any convex form p of degree 2d. If we denote by x and y the real and imaginary
parts of the vector z, the same inequality reads

|∂2d
z p| ≤ Bd (∂2

x + ∂2
y)d p.

Remark 5. For all forms p ∈ Hn,2d, and for all complex vectors z ∈ Cn whose real
and imaginary parts are given by x and y, the quantity Qp(z, z̄) is proportional to the
average of the form p on the ellipse

{αx + βy | α, β ∈ R and α2 + β2 ≤ 1}.

More precisely, we show in section 3.7.1 the identity

Qp(z, z̄) =
4d(d+ 1)

π

(
2d

d

)−1 ∫∫
α2+β2≤1

p(αx + βy) dαdβ. (3.10)
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The generalized Cauchy-Schwarz inequality in (3.8) can thus be equivalently written
as

∀x,y ∈ Rn |p(x + iy)| ≤ B′d

∫∫
α2+β2≤1

p(αx + βy) dαdβ,

for any convex form p ∈ Hn,2d, where B′d := 4d(d+1)

(2d
d )π

Bd.

theorem 3.3.1 is equivalent to the statement that the constants A∗d and B∗d are
finite for all positive integers d. The following theorem strengthens this claim.

Theorem 3.3.2 (Optimal constants in the GCS inequalities). For all positive integers
d,

B∗d =

(
2(d−1)
d−1

)
d

.

Moreover, A∗1 = A∗2 = A∗3 = 1, A∗4 is an algebraic number of degree 3, and for all even
integers d ≥ 4, A∗d > 1. More generally, for every positive integer d, the constant A∗d
is the optimal value of an (explicit) semidefinite program.

Proof. See section 3.3.2.

Remark 6. The quantity
(2(d−1)
d−1 )
d

is known as the dth Catalan number [99].

3.3.1 Proof of the generalized Cauchy-Schwarz inequalities

In this section, we will show that the GCS inequalities are, at heart, linear inequalities
about bivariate convex forms. This observation will eventually lead to a simple proof
of theorem 3.3.1.

The next lemma leverages the homogeneity properties of the elements of Hn,2d to
linearize inequalities eqs. (3.7) and (3.8).

Lemma 3.3.3. For all n, d ∈ N, for any positive constants Ad and Bd, and for any
nonnegative form p ∈ Pn,2d,
(i) the form p satisfies the inequality in eq. (3.7) with constant Ad if and only if

∀x,y ∈ Rn 2Qp(x,y) ≤ Ad (p(x) + p(y)) , (3.11)

(ii) the form p ∈ Pn,2d satisfies the inequality in eq. (3.8) with constant Bd if and only
if

∀z ∈ Cn Re (p(z)) ≤ BdQp(z, z̄). (3.12)

Proof. Fix positive integers n and d, positive scalars Ad and Bd, and let p ∈ Pn,2d. Let
us prove part (i) of the lemma first, i.e., that the form p satisfies eq. (3.7) if and only
if it satisfies eq. (3.11). The “only if” direction can be easily seen from the inequality

∀a, b ≥ 0
√
ab ≤ a+ b

2
.
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We now turn our attention to the “if” direction. Applying inequality eq. (3.11) to

vectors x and λ
1
dy, where λ is a nonnegative scalar, results in

2Qp(x, λ
1
dy) ≤ Ad

(
p(x) + p(λ

1
dy)
)
.

By homogeneity, we get that 2λQp(x,y) ≤ Ad (p(x) + λ2p(y)). In other words, for
all vectors x,y ∈ Rn, the univariate polynomial f(λ) := Ad p(x) + λ2 Ad p(y) −
2λ Qp(x,y) is nonnegative on [0,∞). Since the form p is assumed to be nonnegative,
the scalars p(x) and p(y) are nonnegative. If one of these two scalars is zero, or
if the scalar Qp(x,y) is negative, the inequality in eq. (3.11) follows immediately.
Otherwise, the polynomial f has two (complex) roots, whose sum and product are
both positive. The polynomial f is therefore nonnegative on [0,∞) if and only if
its roots are equal or are not real. In the first case, the discriminant Qp(x,y)2 −
A2
dp(x)p(y) is zero, and in the second case, the discriminant is negative. In both

cases, the inequality in eq. (3.11) follows.
We now prove part (ii) of the lemma, i.e., that the form p satisfies eq. (3.8) if and

only if it satisfies eq. (3.12). Again, it is straightforward to see why the “only if”
part is true, so we only prove the “if” part. Let us assume that p satisfies inequality
eq. (3.12) with constant Bd, and let z be an arbitrary complex vector in Cn. Let

z′ = eiθz, where θ := arg(p(z))
2d

is chosen so that p(z′) is a nonnegative scalar. By
homogeneity, we have

|p(z)| = Re (p(z′)) and Qp(z, z̄) = Qp(z
′, z̄′).

Applying inequality eq. (3.12) to z′ leads to |p(z)| ≤ Bd Qp(z, z̄), which is the desired
result.

We now show that it suffices to prove the GCS inequalities for convex forms in 2
variables. For this purpose, notice that for any n-variate form p of degree 2d and for
any two vectors x,y ∈ Rn, the restriction of p to the plane spanned by the vectors x
and y

q(x, y) := p(xx + yy). (3.13)

retains all relevant information for the inequality eq. (3.7). Indeed,

p(x) = q(e1), p(y) = q(e2) and Qp(x,y) = Qq(e1, e2),

where e1
T = (1, 0) and e2

T = (0, 1). Moreover, for any complex vector z = x+ iy, we
have p(z) = q(e1 + ie2), Qp(z, z̄) = Qq(e1 + ie2, e1 − ie2), and thus all the quantities
appearing in the inequality eq. (3.8) only depend on p through its two-dimensional
restriction q as well.

The form q defined in eq. (3.13) is bivariate and of the same degree as p. Fur-
thermore, the form q is convex if p is. The proof of theorem theorem 3.3.1 therefore
reduces to showing existence of two constants Ad and Bd indexed by d ∈ N, such that

55



all bivariate convex forms q of degree 2d satisfy the inequalities

2Qq(e1, e2) ≤ Ad (q(e1) + q(e2)) , (3.14)

and
Re (q(e1 + ie2)) ≤ Bd Qq(e1 + ie2, e1 − ie2). (3.15)

We now show that these inequalities follow from the following simple lemma, whose
proof is delayed until the end of the section.

Lemma 3.3.4. Let Ω be a closed cone in Hn,2d, and let ` be a linear form defined on
Ω that satisfies

∀p ∈ Ω [`(p) = 0 =⇒ p = 0] and ` ≥ 0 on Ω. (3.16)

Then the set Ω` := {p ∈ Ω | `(p) ≤ 1} is compact.

Proof of theorem 3.3.1. Fix d ∈ N, and define two linear forms ` and s acting on
q ∈ C2,2d as `(q) := q(e1)+q(e2) and s(q) := Qq(z, z̄), where z = e1+ie2. We start by
showing that the linear forms ` and s satisfy the condition in eq. (3.16) with Ω = C2,2d.
If q ∈ C2,2d, then q is nonnegative and therefore `(q) ≥ 0. Moreover, because of the
relationship between Qq(z, z̄) and the integral of q described in eq. (3.10), it is clear
that s(q) ≥ 0 as well. Now assume that a form q ∈ C2,2d satisfies `(q) = 0. Since q is
nonnegative, we have q(e1) = q(e2) = 0. By convexity, the restriction of the function
q to the segment linking e1 to e2 is identically zero. By homogeneity, q must be
identically zero. Similarly, if s(q) = 0, then by eq. (3.10), the average of q on the unit
disk is zero, and since the form q is assumed to be nonnegative, it must be identically
0.

By lemma 3.3.4, the following two sets must therefore be compact:

L := {q ∈ C2,2d | q(e1) + q(e2) ≤ 1}, S := {q ∈ C2,2d | Qp(e1 + ie2, e1 − ie2) ≤ 1}.

Let ‖ · ‖ be any norm on the vector space H2,2d and define the scalars α, β as follows:

α := sup
q∈L
‖q‖ and β := sup

q∈H2,2d

2Qq(e1, e2)

‖q‖
.

We will show that inequality eq. (3.14) holds with constant Ad = αβ. Note that α is
finite because L is compact, and β is finite because the map q 7→ Qq(e1, e2) is a linear
function over a finite dimensional space. Let q ∈ C2,2d and assume that q is not zero,
so that the scalar `(q) is positive. On the one hand, we have 2Qq(e1, e2) ≤ β‖q‖. On
the other hand, ‖q‖ ≤ α`(q) because the form q

`(q)
is in the set L. We have just shown

that 2Qq(e1, e2) ≤ αβ`(q), which concludes the proof of inequality (3.14). A similar
argument shows the existence of a finite constant Bd for which (3.15) hold.

Proof of lemma 3.3.4. Let Ω and ` be as in the statement of the lemma, and let ‖ · ‖
be any norm of Hn,2d. It is clear that the set Ω` is a closed set as it is the intersection
of a half space with Ω.
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Suppose it is not bounded, i.e., suppose there exists a sequence (q(k))k of Ω` such
that ‖q(k)‖ → ∞ as k → ∞. By taking a subsequence if necessary, we can assume

that the sequence (q(k))k does not contain zero. The sequence
(

q(k)

‖q(k)‖

)
k

lives in the

cone Ω, and is bounded (by one), so it admits a converging subsequence. Let q∞ ∈ Ω

denote its limit. Since the function ` is bounded by 1 on Ω`, the ratio `(q(k))

‖q(k)‖ tends to

0 as k →∞, and therefore `(q∞) = 0. By eq. (3.16), the form q∞ is itself identically
zero. Yet, ‖q∞‖ = 1, which is a contradiction.

3.3.2 Values of the optimal constants A∗d and B∗d defined in
eq. (3.9)

Fix d ∈ N. We have shown in the previous section that

A∗d = minA s.t. ∀q ∈ C2,2d 2Qq(e1, e2) ≤ A (q(e1) + q(e2)) ,

B∗d = minB s.t. ∀q ∈ C2,2d Re (q(e1 + ie2)) ≤ BQq(e1 + ie2, e1 − ie2).
(3.17)

This formulation is useful for finding lower bounds on the constants A∗d and B∗d .
Indeed, to show that A∗d > A for some scalar A , it suffices to exhibit a convex
bivariate form q that satisfies 2Qq(e1, e2) > A (q(e1) + q(e2)). A similar statement
can be made for B∗d as well.

To find upper bounds on the constants A∗d and B∗d , we take a dual approach. For
all scalars A and B, we define the linear forms

`A := A(∂2d
x + ∂2d

y )− 2∂dx∂
d
y , (3.18)

and
sB := B(∂2

x + ∂2
y)
d − Re ((∂x + i∂y)

2d). (3.19)

Because of our discussion in section 3.2.5, the constants A∗d and B∗d can be found by
solving the following optimization problems, dual to the optimization problems in
eq. (3.17).

A∗d = minA s.t. `A ∈ C∗2,2d,
B∗d = minB s.t. sB ∈ C∗2,2d.

(3.20)

In other words, in order to prove that A∗d ≤ A for some scalar A, one has to show
that `A can be decomposed as in eq. (3.6). An identical statement can be made for
B∗d here too.

Values of the optimal constants A∗d defined in eq. (3.9)

We will show in this section that the optimization problems in eq. (3.20) are tractable.
The following theorem shows that convex bivariate forms are also sos-convex.

Theorem 3.3.5. [9, Theorem 5.1] A bivariate form q(x, y) =
∑2d

i=0 qix
iy2d−i is convex

if and only if it is sos-convex, i.e., if there exists a positive semidefinite 2d×2d matrix
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d 1 2 3 4 5 6 7 8
A∗d 1.000 1.000 1.000 1.011 1.000 1.061 1.000 1.048

Table 3.1: Approximation of the value of the constant A∗d defined in eq. (3.9) obtained
by numerically solving the SDP in eq. (3.20)

Q such that
∀x, y ∈ R,∀u ∈ R2 uT∇2q(x, y)u = zTQz, (3.21)

where zT := (u1x
d−1, u1x

d−2y, . . . , u1y
d−1, u2x

d−1, u2x
d−2y, . . . , u2y

d−1) is the vector of
monomials in the variables x, y, u1, u2.

By expanding both sides of eq. (3.21) and matching the coefficients of the polyno-
mials that appear on both sides, we obtain an equivalent system of linear equations
involving the coefficients of the form q and the entries of the matrix Q. What we
have just shown is that

C2,2d = {q ∈ H2,2d | ∃Q � 0 s.t. q and Q satify the linear equations in eq. (3.21)}.

This set is a projected spectrahedron, i.e., it is defined via linear equations and
linear matrix inequalities. The class of projected spectrahedra is stable by taking the
convex dual, so C∗2,2d is also a projected spectrahedron. Optimizing linear functions
over such sets (or their duals) is therefore a semidefinite program (SDP). For any
fixed integer d, the optimization problems in eq. (3.20) characterizing the constant
A∗d and B∗d are therefore SDPs. Semidefinite programming is a well-studied subclass of
convex optimization problems that can be solved to arbitrary accuracy in polynomial
time. We report in table 3.1 the values of A∗d (d = 1, . . . , 8) to 4 digits of accuracy
obtained using the solver MOSEK [22].

Note that in practice, numerical software will only return an approximation of
the optimal solution to an SDP. Such approximations can nevertheless be useful as
they help formulate a “guess” for what the exact solution might be, especially if
the solution sought contains only rational numbers (with small denominators). In
particular, the identities below, which are trivial to verify, were obtained by rounding
solutions obtained from a numerical SDP solver.

∂2
x + ∂2

y − 2∂x∂y = (∂x − ∂y)2,

∂4
x + ∂4

y − 2∂2
x∂

2
y = (∂x − ∂y)2(∂x + ∂y)

2,

∂6
x + ∂6

y − 2∂3
x∂

3
y =

1

2
(∂x − ∂y)2(∂4

x + ∂4
y + (∂x + ∂y)

4).

The right-hand side (and therefore, the left-hand side) of each one of these identities
is in C∗2,2d for d = 1, 2, 3 respectively by eq. (3.6). These identities constitute a formal
proof that A∗1, A

∗
2, A

∗
3 ≤ 1. The reverse inequality A∗d ≥ 1 valid for all integers d was
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already proved in section 3.3. We therefore have

A∗1, A
∗
2, A

∗
3 = 1

We also note that few algebraic methods have been developed for solving SDPs
exactly, especially for problems of small sizes [15, 96]. For instance, we were able to
solve the SDP in (3.20) characterizing A∗d for d = 4. The key steps in this computation
are (i) exploiting the symmetries of the problem to reduce the size of the SDP [81], (ii)
formulating the corresponding Karush-Kuhn-Tucker (KKT) equations (see, e.g., [20])
and (iii) solving these polynomial equations using variable elimination techniques. 2

The value of A∗4 is given by

1

70
ω

1
3 +

128

15
ω−

1
3 +

11

35
, where ω := 14336 + i

14336
√

3

9
.

Unlike the constants A∗d for d ≤ 3, the constant A∗4 is not equal to 1. In fact A∗4 is
not even a rational number, but an algebraic number of degree three with minimal
polynomial given by

t3 − 33

35
t2 − 17

245
t+

13

42875
.

In section 3.7.2, we prove that A∗d > 1 whenever d is an even integer larger than 4.
Conjecture and open problem. Supported by the numerical evidence in ta-

ble 3.1, we conjecture that the constant A∗d defined in (3.9) is equal to 1 when the
integer d is odd, and we leave open the problem of finding the exact value of A∗d for
even integers d larger than 4.

Exact values of the optimal constants B∗d defined in eq. (3.9)

The goal of this section is to show that

∀d ∈ N B∗d =

(
2(d−1)
d−1

)
d

.

The following proposition shows that for all positive integers d, sB ∈ C∗2,2d for B =
(2(d−1)
d−1 )
d

, where sB is defined in eq. (3.19), and therefore, B∗d ≤
(2(d−1)
d−1 )
d

.

Proposition 3.3.6. For all positive integers d, for all x, y ∈ R,(
2(d−1)
d−1

)
d

(x2 + y2)d − Re ((x+ iy)2d) =
4d

2d

d−1∑
k=0

(−skx+ cky)2 (ckx+ sky)2d−2 , (3.22)

where ck = cos(kπ
2d

) and sk = sin(kπ
2d

) for k = 0, 1, . . . , 2d− 1.

Proof. Identity eq. (3.22) is homogeneous in xT = (x, y). It is therefore sufficient to
prove that it holds when x is a unit vector. Let x be such a vector, and let us write

2The curious reader is referred to this Sage notebook describing these steps in more details [75].
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x = cos(θ) and y = sin(θ) for some θ ∈ R. Then identity eq. (3.22) becomes

∀θ ∈ R
(

2(d−1)
d−1

)
d

− cos(2dθ) =
4d

2d

d−1∑
k=0

sin2

(
kπ

2d
− θ
)

cos2d−2

(
kπ

2d
− θ
)
.

We give the proof of this trigonometric identity below. To simplify notations, let

fd(θ) :=
d−1∑
j=0

sin2

(
jπ

d
− θ
)

cos2d−2

(
jπ

d
− θ
)
.

For j ∈ N, let rj := e−i
jπ
d . Using the fact that

cos

(
jπ

d
− θ
)

=
eiθrj + e−iθr̄j

2
and sin

(
jπ

d
− θ
)

=
eiθrj − e−iθr̄j

2i
,

we get that

fd(θ) = − 1

22d

d−1∑
j=0

(
eiθrj − e−iθr̄j

)2 (
eiθrj + e−iθr̄j

)2d−2
.

By expanding and exchanging the order of the summation, we get

fd(θ) = − 1

22d

2d−2∑
h=0

(
2d− 2

h

)(
(eiθ)2h

d−1∑
j=0

r2h
j + (eiθ)2h−4

d−1∑
j=0

r2h−4
j − 2(eiθ)2h−2

d−1∑
j=0

r2h−2
j

)
.

We now use the following simple fact about the sum of the kth powers of roots of
unity

∀k ∈ N
d−1∑
j=0

r2k
j =

{
d if d divides k
0 otherwise

to get3

fd(θ) = − d

22d

2d−2∑
h=0

(
2d− 2

h

)(
e2iθh1{d | h} + e2i(h−2)θ1{d | h−2} − 2e2i(h−1)θ1{d | h−1}

)
,

and therefore

fd(θ) =
2d

22d

((
2d−2
d−1

)
d
− cos(2dθ)

)
.

3The notation 1d|h stands for 1 if d divides h and 0 otherwise.
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Let us now show that for all d ∈ N, the constant B∗d is bounded below by
(2d−2
d−1 )
d

.
To do so, we exhibit a family of nonzero bivariate convex forms (qd)d∈N that satisfy

∀d ∈ N Re (qd(e1 + ie2)) =

(
2d−2
d−1

)
d

Qqd(e1 + ie2, e1 − ie2).

We plot in fig. 3.1 the 1-level sets of the polynomials qd for d = 1, . . . , 4.

Proposition 3.3.7. For every positive integer d, the form qd defined by

qd(x, y) := Re ((x+ i y)2d) + (2d− 1)(x2 + y2)d (3.23)

is convex and satisfies Re (qd(e1 + ie2)) =
(2d−2
d−1 )
d

Qqd(e1 + ie2, e1 − ie2).

x

y

q1(x, y) = 2x2

x

y

q2(x, y) = 4x4 + 4y4

x

y

q3(x, y) = 6x6 + 30x2y4 + 4y6

x

y

q4(x, y) = 8x8 + 112x4y4 + 8y8

Figure 3.1: Plot of the 1-level sets of the forms qd defined in (3.23) for d = 1, . . . , 4.
These forms saturate the generalized Cauchy-Schwarz inequality in (3.8).

To give the proof of proposition 3.3.7, it will be convenient for us to switch to
polar coordinates (r, θ) ∈ [0,∞) × [0, 2π) defined by x = r cos(θ) and y = r sin(θ).
More explicitly, for every k ∈ N, every bivariate form p ∈ H2,k can be expressed in
polar coordinates as p(x, y) = rkf(θ), where f is a polynomial expression in cos(θ)
and sin(θ). In particular, the function f is differentiable infinitely many times. The
following lemma gives the expressions of the Hessian and Laplacian operators in polar
coordinates.

Lemma 3.3.8 (Hessian and Laplacian in polar coordinates). The Hessian and Lapla-
cian of a form p ∈ H2,k, whose expression in polar coordinates is p(x, y) = rkf(θ),
are given by

∇2p(x, y) = rk−2 (k(k − 1)f(θ)err + (k − 1)f ′(θ)erθ + (k + f ′′(θ)) eθθ) ,

∆p(x, y) = rk−2
(
k2f(θ) + f ′′(θ)

)
,
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where er :=

(
cos(θ)
sin(θ)

)
, eθ :=

(
− sin(θ)
cos(θ)

)
, and err = erer

T , erθ = ereθ
T +eθer

T , eθθ =

eθeθ
T .

Proof. Let p and f be as in the statement of the lemma. Recall that the gradient
operator ∇ can be written in polar coordinates as follows

∇ =
∂

∂r
er +

1

r

∂

∂θ
eθ.

The Hessian operator ∇2 = ∇ · ∇T is thus given by

∇2 =
∂2

∂r2
err +

∂

∂r

(
1

r

∂

∂θ

)
erθ +

(
1

r

∂

∂r
+

1

r2

∂2

∂θ2

)
eθθ.

Note that taking the derivative of a form of degree k′ ≥ 1 with respect to r is
equivalent to multiplying by k′

r
. The Hessian operator, when applied to the k-degree

form p, can thus be simplified further to

∇2p(x, y) = rk−2 (k(k − 1)f(θ)err + (k − 1)f ′(θ)erθ + (k + f ′′(θ)) eθθ) .

The Laplacian ∆p is given by the trace of the matrix ∇2p. Since the trace of both
matrices err and eθθ is one and the trace of erθ is zero, we get that

∆p(x, y) = rk−2
(
k2f(θ) + f ′′(θ)

)
.

Proof of proposition 3.3.7. Fix a positive integer d and let us prove that the form qd
defined in eq. (3.23) is convex. Note that we can express qd in polar coordinates as
follows,

qd(x, y) = Re (r2dei2dθ + (2d− 1)r2d).

Using lemma 3.3.8, we get that

∇2r2d = r2d−2 (2d(2d− 1)err + 2deθθ)

and
∇2
(
r2dei2dθ

)
= 2d(2d− 1)r2d−2ei2dθ (err + ierθ − eθθ) .

By summing the previous two equations term by term and taking the real part, we
get

∇2qd(x, y) = 2d(2d− 1)r2d−2

(
cos(2dθ) + 2d− 1 − sin(2dθ)
− sin(2dθ) − cos(2dθ) + 1

)
.

The trace of the matrix in the right-hand side of this equation is (2d)2(2d− 1)r2d−2,
and its determinant is given by (2d(2d − 1)r2d−2)2(2d − 2)(1 + cos(2dθ)). Both the
trace and the determinant of the Hessian matrix of qd are thus clearly nonnegative.
This proves that this Hessian matrix is positive semidefinite and that the form qd is
convex.
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Let us now compute Re (qd(z)) and Qqd(z, z̄) where z = e1 + ie2. By plugging
x = 1 and y = i in the right-hand side of the identity

Re ((x+ iy)2d) =
d∑

k=0

(
2d

2k

)
x2d−2k(iy)2k,

we get that qd(z) =
∑d

k=0

(
2d
2k

)
= 22d−1.

We now compute Qqd(z, z̄). Because of the identification between linear forms and
differential operators introduced in section 3.2.5, this task is equivalent to computing
∆dqd. On the one hand, the function f(x, y) := (x+iy)2d is holomorphic when viewed
as a function of the complex variable z = x+ iy, therefore

∆d Re ((x+ iy)2d) = 0.

On the other hand, by using lemma 3.3.8 again, we get for every positive integer
k, ∆r2k = 4k2r2k−2, and by immediate induction, ∆dr2d = 22dd!2. Overall, we get
∆dqd = (2d− 1)22dd!2, and therefore

Qqd(z, z̄) = 22d−1 d(
2d−2
d−1

) .
In conclusion, we have just proved that Re (qd(z)) =

(2d−2
d−1 )
d

Qqd(z, z̄).

3.4 What Separates the Sum of Squares Cone from

the Nonnegative Cone

In [45], the author offers a complete description of the hyperplanes separating sos
forms from non-sos forms inside the cone of nonnegative quaternary quartics. We
include the high level details of that description here to make this article relatively
self-contained.

If a form h ∈ P4,4 is not sos, then there exists a subset V = {v1, . . . ,v8} of C4

and complex numbers a1, . . . , a8 ∈ C \ {0} that certify that fact in the sense that4

8∑
i=1

aip(vi) ≥ 0 ∀p ∈ Σ4,4, (3.24)

but
∑8

i=1 aih(vi) < 0 [45, Theorem 1.2]. Let us now explain where the set V and
the scalar ai come from. The points in V are the common zeros to three linearly
independent quadratic forms qi(x) = xTQix, where the Qi are 4× 4 real symmetric

4The left-hand side of eq. (3.24) is real because the vectors vi and the scalars ai come in complex
conjugate pairs (see the discussion that follows (3.26).)
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matrices and i = 1, 2, 3 [45, Lemma 2.9]. Equivalently,

V = {x ∈ C4 | q1(x) = q2(x) = q3(x)= 0} = {v1, . . . ,v8}.

Define V 2 := {vvT | v ∈ V }. The eight elements of V 2 live in the 10-dimensional
vector space of symmetric 4 × 4 matrices, and they are all orthogonal to the three-
dimensional vector space spanned by Q1, Q2, and Q3. A simple dimension counting
argument tells us that there must exist a linear relationship between the vectors vi
of the form

8∑
i=1

µiviv
T
i = 0, (3.25)

for some µ1, . . . , µ8 ∈ C. In fact, this relationship between the vi is unique (up to
scaling). Furthermore, all the scalars µi must be nonzero. This is known as the
Cayley-Bacharach relation [73]. We assume from now on that all the µi have norm 1
(after possibly scaling the vectors vi.)

Now that we have characterized the evaluation points vi, let us turn our attention
to the scalars ai in eq. (3.24). These scalars should satisfy [45, Theorem 6.1 and
Theorem 7.1]

8∑
i=1

1

ai
= 0. (3.26)

We now need to distinguish between the case where all the elements of V are real
(i.e., V ⊂ R4) and the case where they are not. In the former case, all the scalars µi
must be real, exactly one of the scalars ai must be negative and the rest should be
positive [45, Theorem 6.1]. By reordering the indices if necessary, we assume a1 < 0
and ai > 0 for i > 1. By scaling all the scalars ai, we assume

1

a1

= −
8∑
i=2

1

ai
= −1, (3.27)

in which case inequality eq. (3.24) reads

p(v1) ≤
8∑
i=2

aip(vi). (3.28)

In the case where one of the vectors vi is not real, it is proven in [45, Corollary
4.4] that V could be taken so that exactly two of the vectors vi are not real, in which
case they (and their coefficients µi) should be conjugate of each other. Again, up to
reordering, we can assume that v1 := z is not real, v2 = z̄, µ1 = µ̄2 and the rest of
the vectors vi and scalars µi are real. By scaling, we can further assume that

1

a1

+
1

ā1

= −
8∑
i=3

1

ai
= −1. (3.29)
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In this case, the inequality in eq. (3.24) reads

a1p(z) + ā1p(z̄) +
8∑
i=3

aip(vi) ≥ 0. (3.30)

We present the following simple lemma (whose proof can be found in section 3.7.3)
that will let us rewrite the inequality in eq. (3.24) without refering to the scalars ai.

Lemma 3.4.1. For all nonnegative scalars x2, . . . , xn, the maximum of the quantity∑n
i=2 aixi over all positive scalars a2, . . . , an satisfying

∑n
i=2

1
ai

= 1 is (
∑n

i=2

√
xi)

2.
Furthermore, for any complex number z, the maximum value of the quantity az + āz̄
over all complex numbers a satisfying 1

a
+ 1

ā
= 1 is 2(|z|+ Re (z)).

Indeed, lemma 3.4.1 shows that a form p satisfies inequality eq. (3.28) for every
a1, . . . , a8 ∈ R satisfying eq. (3.27) if and only if

p(v1) ≤

(
8∑
i=2

√
p(vi)

)2

,

and the same form satisfies Inequality eq. (3.30) for every a1 ∈ C and a3 . . . , a8 ∈ R
satisfying eq. (3.29) if and only if

2(|p(z)|+ Re (p(z))) ≤

(
8∑
i=3

√
p(vi)

)2

.

We summarize the result of this section in the following theorem.

Theorem 3.4.2 ([45]). A nonnegative quaternary quartic form p is sos if and only
if both of the following conditions hold.

· For every v1, . . . ,v8 ∈ R4 and α2, . . . , α8 ∈ {−1, 1} such that v1v
T
1 =∑8

i=2 αiviv
T
i ,

p(v1) ≤

(
8∑
i=2

√
p(vi)

)2

. (3.31)

· For every z ∈ C4, for every v3, . . . ,v8 ∈ R4, and for every α3, . . . , α8 ∈ {−1, 1}
such that zzT + z̄z̄T =

∑8
i=3 αiviv

T
i ,

2(|p(z)|+ Re (p(z))) ≤

(
8∑
i=3

√
p(vi)

)2

. (3.32)
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Figure 3.2: The set {(x1, x2, x3) ∈ R3 | p(x1, x2, x3, 1) = 1}, i.e., the section of the
1-level set of the polynomial p (defined in eq. (3.33)) with the hyperplane {x4 = 1}.

Example 1. Let us use theorem 3.4.2 to prove that the following quaternary quartic
form

p(x) =
4∑
i=1

x4
i +

∑
1≤i,j,k≤4
i 6=j,i6=k,j 6=k

x2
ixjxk + 4x1x2x3x4, (3.33)

whose 1-level set is depicted in fig. 3.2, is not sos. Take V to be the set of 8 elements
given by

V := {−1, 1} × {−1, 1} × {−1, 1} × {1},

and partition it as V = V + ∪ V −, where V + (resp. V −) is the subset of elements V
whose entries sum to an even (resp. odd) number. Up to scaling, the unique linear
relationship satisfied by the elements of V is given by∑

v∈V +

vvT −
∑
v∈V −

vvT = 0.

Let v1 ∈ V stand for the vector (1, 1, 1, 1)T , and denote the rest of the elements of V
by v2, . . . ,v8. It is easy to check that

p(v1) = 32 and p(vi) = 0 for i = 2, . . . , 8.

Therefore, p does not satisfy requirement eq. (3.31) in theorem 3.4.2, and is not sos
as a result.

3.5 Proof of the Main Theorem

In this section we prove that C4,4 ⊆ Σ4,4. Our plan of action is to show that any
quaternary quartic form p that satisfies the following generalized inequality:

∀x,y ∈ Rn Qp(x,y) ≤
√
p(x)p(y) (3.34)

and
∀z ∈ Cn |p(z)| ≤ Qp(z, z̄), (3.35)

must satisfy the requirements eq. (3.31) and eq. (3.32) that appear in theorem 3.4.2,
and hence must be sos. The containment C4,4 ⊆ Σ4,4 then follows since convex qua-
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ternary quartics satisfy the generalized Cauchy-Schwarz inequalities with constants
A∗2 = B∗2 = 1 by theorem 3.3.2.

Let p be a quaternary quartic form satisfying the inequalities in eqs. (3.34)
and (3.35), and let us prove that p satisfies both requirements appearing in theo-
rem 3.4.2.

The first requirement in (3.31). Let v1, . . . ,v8 ∈ R4 and α2, . . . , α8 ∈ {−1, 1}
such that v1v

T
1 =

∑8
i=2 αiviv

T
i . Using the tensor notation developed in section 3.2.3,

this is equivalent to v2
1 =

∑8
i=2 αiv

2
i . Squaring5 both sides of this equation leads to

v4
1 =

8∑
i=2

αiαjv
2
iv

2
j .

Recall that the biform (x,y) 7→ Qp(x,y) defined in eq. (3.5) can be seen as a linear
function of the symmetric outer product x2y2. We conclude that

p(v1) =
∑

2≤i,j≤8

αiαjQp(vi,vj).

Using eq. (3.34), we know that |Qp(vi,vj)| ≤
√
p(vi)p(vj), and therefore

p(v1) ≤
∑

2≤i,j≤8

√
p(vi)p(vj).

The second requirement in (3.32). Let v3, . . . ,v8 ∈ R4, α3, . . . , α8 ∈ {1,−1}
and z ∈ C4 such that zzT + z̄z̄T =

∑8
i=3 αiviv

T
i . Squaring both side of the equation

and applying the biform Qp as before gives:∑
3≤i,j≤8

αiαjQp(vi,vj) = p(z) + p(z̄) + 2Qp(z, z̄) = 2 Re (p(z)) + 2Qp(z, z̄).

On the one hand, using eq. (3.35), we know that |p(z)| ≤ Qp(z, z̄), so

2(Re (p(z)) + |p(z)|) ≤ 2 Re (p(z)) + 2Qp(z, z̄).

On the other hand, by eq. (3.34),∑
3≤i,j≤8

αiαjQp(vi,vj) ≤
∑

3≤i,j≤8

√
p(vi)p(vj).

In conclusion, 2(|p(z)|+ Re (p(z))) ≤
∑8

i,j=3

√
p(vi)p(vj).

5The square of a vector v is simply the outer product of the vector with itself.
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3.6 Remarks on the Case of Ternary Sextics

It is natural to ask whether our proof can be extended to show that convex ternary
sextics are also sos. theorem 3.4.2 for instance generalizes in a straightforward fashion.

Theorem 3.6.1 ([45]). A nonnegative ternary sextic form p is sos if and only if both
of the following conditions hold.

· For every v1, . . . ,v9 ∈ R3 and α2, . . . , α9 ∈ {−1, 1} such that v3
1 =

∑9
i=2 αiv

3
i ,

p(v1) ≤

(
9∑
i=2

√
p(vi)

)2

. (3.36)

· For every z ∈ C3, for every v3, . . . ,v9 ∈ R3, and for every α3, . . . , α9 ∈ {−1, 1}
such that z3 + z̄3 =

∑9
i=3 αiv

3
i ,

2(|p(z)|+ Re (p(z))) ≤

(
9∑
i=3

√
p(vi)

)2

. (3.37)

In order for us to follow the same proof strategy that applies to quaternary quartics
to the set of ternary sextics, we would take an arbitrary convex ternary sextic and
try to show that it satisfies both requirements appearing in the previous Theorem.
The first requirement is easily dealt with since sextics satisfy the generalized Cauchy-
Schwarz inequality appearing in eq. (3.7) with a constant A∗3 equal to 1 (similar to
the quartics case). Sextics on the other hand satisfy eq. (3.8) only with a constant
B∗3 strictly larger than 1 (as opposed to B∗2 = 1 for quartics). This proves to be
the main obstacle preventing us from showing that convex ternary sextics satisfy the
second requirement in theorem 3.6.1. In [45, Conjecture 7.3], the author conjectures
that this second requirement is actually not needed, in which case our proof strategy
would succeed.

3.7 Omitted proofs

3.7.1 Proof of identity (3.10)

Let q be a 2d-degree form in n variables and let x,y be two vectors in Rn. By
considering the restriction (x, y) 7→ q(xx + yy) of the form q to the plane spanned by
x and y if necessary, we can assume without loss of generality that n = 2, x = e1,
and y = e2. As a consequence, it suffices to prove that the identity

Qq(e1 + ie2, e1 − ie2) =
4d(d+ 1)

π

(
2d

d

)−1 ∫∫
x2+y2≤1

q(x, y) dxdy

holds for all bivariate convex forms q of degree 2d. This identity will follow from the
following lemma.
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Lemma 3.7.1. For k ∈ N, any form p in H2,k satisfies∫∫
x2+y2≤1

∆p(x, y) dxdy = k(k + 2)

∫∫
x2+y2≤1

p(x, y) dxdy.

Indeed, using this lemma inductively on the iterates q,∆q, . . . ,∆d−1q, we get∫∫
x2+y2≤1

∆dq(x, y) dxdy = 4d(d+ 1)d!2
∫∫

x2+y2≤1

q(x, y) dxdy.

Since ∆dq is a constant and the area of the unit disk is π, we get that

∆dq =
4d(d+ 1)d!2

π

∫∫
x2+y2≤1

q(x, y) dxdy.

Recall from section 3.2.5 that Qq(e1 + ie2, e1 − ie2) = 1
(2d)!

∆dq, and therefore

Qq(e1 + ie2, e1 − ie2) =
4d(d+ 1)

π

(
2d

d

)−1 ∫∫
x2+y2≤1

q(x, y) dxdy,

which concludes the proof.

Proof of lemma 3.7.1. Fix k ∈ N and a form p ∈ H2,k. Denote by D (resp. ∂D) the
unit disk (resp. unit circle). The well-known divergence theorem states that∫∫

D
∆p(x, y) dxdy =

∮
∂D

(
x
y

)T
∇p(x, y),

where
∮
∂D stands for the line integral over ∂D. Euler’s identity shows that the inte-

grand on the right-hand side of the previous equation is kp(x, y), and therefore∫∫
D

∆p(x, y) dxdy = k

∮
∂D
p(x, y).

Exploiting the fact that the function p is homogeneous of degree k again to relate the
integral on D to the line integral over ∂D (see [31, Corollary 1]) leads to∮

∂D
p(x, y) = (k + 2)

∫∫
D
p(x, y) dxdy,

which concludes the proof.
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3.7.2 Proof that the constant A∗d defined in (3.9) is larger than
1 for all even integers d ≥ 4

In this section, we will show that for all even integers d ≥ 4, there exists a convex
bivariate form pd of degree 2d that satisfies pd(1, 0) = pd(0, 1) = 1 and Qpd(e1, e2) > 1.
This shows that A∗d > 1.

Fix an integer d ≥ 4 and let pd := s+ αd q, where

s(x, y) :=
(x+ y)2d + (x− y)2d

2
, q(x, y) :=

d−1∑
k=1

x2ky2d−2k,

and αd is a positive constant defined explicitly in eq. (3.38). Note that pd(1, 0) =
pd(1, 0) = 1 and Qpd(e1, e2) = 1 + αd

(2d
d )
> 1.

It remains to prove that the form pd is convex. The idea of the proof is as follows.
On the one hand, the Hessian of the form s is positive definite everywhere except on
the two lines y = ±x, where it is only positive semidefinite. On the other hand, the
Hessian of the form q is positive definite on the two lines y = ±x. By picking αd to
be small enough, we can therefore make the form pd convex.

More formally, by homogeneity, it suffices to prove that the Hessian of p is positive
semidefinite on the circle S := {(x, y) ∈ R2 | x2 + y2 = 2}. Let us now examine the
Hessians of the forms s and q individually. The Hessian of s is given by

∇2s(x, y) = d(2d− 1)

(
1 −1
1 1

)(
(x+ y)2d−2 0

0 (x− y)2d−2

)(
1 1
1 −1

)
.

The matrix ∇2s(x, y) is positive definite for every (x, y) ∈ S except on the four points
X := {(±1,±1)} where it is only positive semidefinite. We will now prove that the
Hessian of q is positive definite on X. A simple computation shows that

∇2q(1, 1) = ∇2q(−1,−1) =
d(d− 1)

3

(
4d− 5 2d+ 2
2d+ 2 4d− 5

)
,

∇2q(1,−1) = ∇2q(−1, 1) =
d(d− 1)

3

(
4d− 5 −2d− 2
−2d− 2 4d− 5

)
.

By examining the trace and the determinant of these matrices (which are univariate
polynomials in the variable d), we see that they are positive definite if and only if
d ≥ 7

2
. Let us now partition the circle S as

S = U ∪ (S \ U),

where U is any open subset of S containing X on which the matrix ∇2q is positive
definite. If we take

αd := min
‖u‖=1,(x,y)∈S\U

uT∇2s(x, y)u

|uT∇2q(x, y)u|
> 0, (3.38)
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then the Hessian of the form pd := s+αdq is positive semidefinite on S, and the form
pd itself is therefore convex.

3.7.3 Proof of lemma 3.4.1

Let us first prove that for all nonnegative scalars x2, . . . , xn, the optimal value of the
minimization problem below is equal to (

∑n
i=2

√
xi)

2.

min
n∑
i=2

aixi s.t. ai > 0 for i = 2, . . . , n and
n∑
i=2

1

ai
= 1.

Let γ stand for the optimal value of this optimization problem. Taking ai =(∑n
j=2

√
xj

)
x
− 1

2
i for i = 2, . . . , n (with the convention that 0−1 = +∞) shows that

γ ≤ (
∑n

i=2

√
xi)

2. We now show that γ ≥ (
∑n

i=2

√
xi)

2. Consider positive scalars
a2, . . . , an satisfying

∑n
i=2

1
ai

= 1. Note that

n∑
i=2

1

ai
= 1TA−11,

where 1T := (1, . . . , 1) ∈ Rn−1 and A is the diagonal (n−1)×(n−1) matrix with the ai
as diagonal elements. By taking the Schur complement, the inequality 1−1TA−11 ≥ 0
implies that A � 11T . Therefore, by multiplying each side of this matrix inequality
by uT := (

√
x2, . . . ,

√
xn), we get (1Tu)2 ≤ uTAu, i.e., (

∑n
i=2

√
xi)

2 ≤ (
∑n

i=2 aixi)
2.

In conclusion, γ ≥ (
∑n

i=2

√
xi)

2.
Let us now prove that for any complex number z,

max
a∈C, 1

a
+ 1
ā

=1
az + āz̄ = 2(|z|+ Re (z)).

First notice that a ∈ C satisfies 1
a

+ 1
ā

= 1 if and only if a has the form 2 cos(θ)eiθ for
some θ ∈ R.

Write z = |z|eiα for some α ∈ R. Then,

max
θ

cos(θ) Re (eiθz) = max
θ
|z| cos(θ) cos(θ + α)

=
1

2
|z|max(cos(α) + cos(2θ + α))

=
1

2
|z|(1 + cos(α))

=
|z|+ Re (z)

2
.

The result follows as az + āz̄ = 4 Re (cos(θ)eiθz).
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Chapter 4

On Algebraic Proofs of Stability
for Homogeneous Vector Fields

4.1 Introduction and Outline of Contributions

We are concerned in this chapter with a continuous time dynamical system

ẋ = f(x), (4.1)

where f : Rn → Rn is continuously differentiable and has an equilibrium at the
origin, i.e., f(0) = 0. The problem of deciding asymptotic stability of equilibrium
points of such systems is a fundamental problem in control theory. The goal of this
chapter is prove that if f is a homogeneous vector field (see the definition below),
then asymptotic stability is equivalent to existence of a Lyapunov function that is the
ratio of two polynomials (i.e., a rational function). We also address the computational
question of finding such a Lyapunov function in the case where the vector field f is
polynomial.

A scalar valued function p : Rn → R is said to be homogeneous of degree d > 0
if it satisfies p(λx) = λdp(x) for all x ∈ Rn and all λ ∈ R. Similarly, we say that a
vector field f : Rn → Rn is homogeneous of degree d > 0 if f(λx) = λdf(x) for all
x ∈ Rn and all λ ∈ R. Homogeneous vector fields have been extensively studied in
the literature on nonlinear control; see e.g. [181], [19], [88, Sect. 57], [87], [30],[71],
[38], [103], [57], [23], [56], [179], [142], [76], [212], [110]. These systems are not only of
interest as is: they can also be used to study properties of related non-homogeneous
systems. For example, if one can show that the vector field corresponding to the
lowest-degree nonzero homogeneous component of the Taylor expansion of a smooth
nonlinear vector field is asymptotically stable, then the vector field itself will be locally
asymptotically stable.

We recall that the origin of (4.1) is said to be stable in the sense of Lyapunov if
for every ε > 0, there exists a δ = δ(ε) > 0 such that

‖x(0)‖ < δ ⇒ ‖x(t)‖ < ε, ∀t ≥ 0.
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We say that the origin is locally asymptotically stable if it is stable in the sense of
Lyapunov and if there exists a scalar δ̂ > 0 such that

‖x(0)‖ < δ̂ ⇒ lim
t→∞

x(t) = 0.

The origin is globally asymptotically stable if it is stable in the sense of Lyapunov
and limt→∞ x(t) = 0 for any initial condition in Rn. A basic fact about homogeneous
vector fields is that for these systems the notions of local and global asymptotic
stability are equivalent. Indeed, the values that a homogeneous vector field f takes
on the unit sphere determines its value everywhere.

It is also well known that the origin of (4.1) is globally asymptotically stable if
there exists a continuously differentiable Lyapunov function V : Rn → R which is
radially unbounded (i.e., satisfies V (x) → ∞ as ‖x‖ → ∞), vanishes at the origin,
and is such that

V (x) > 0 ∀x 6= 0 (4.2)

−〈∇V (x), f(x)〉 > 0 ∀x 6= 0. (4.3)

Throughout this chapter, whenever we refer to a Lyapunov function, we mean a
function satisfying the aforementioned properties. We say that V is positive definite
if it satisfies (4.2). When V is a homogeneous function, the inequality (4.2) can be
replaced by

V (x) > 0 ∀x ∈ Sn−1,

where Sn−1 here denotes the unit sphere of Rn. It is straightforward to check that a
positive definite homogeneous function is automatically radially unbounded.

The first contribution of this chapter is to show that an asymptotically stable
homogeneous and continuously differentiable vector field always admits a Lyapunov
function which is a rational function (Theorem 4.3.1). This is done by utilizing a well-
known result on existence of homogeneous Lyapunov functions [179], [88], [212], [110]
and proving a statement on simultaneous approximation of homogeneous functions
and their derivatives by homogeneous rational functions (Lemma 4.2.1).

4.1.1 Polynomial vectors fields

We pay special attention in this chapter to the case where the vector field f in (4.1) is
polynomial. Polynomial differential equations appear ubiquitously in applications—
either as true models of physical systems or as approximations of other families of
nonlinear dynamics—and have received a lot of attention in recent years because of the
advent of promising analysis techniques using sum of squares optimization [156], [165],
[95], [148], [53], [94], [107]. In a nutshell, these techniques allow for an automated
search over (a subset of) polynomial Lyapunov functions of bounded degree using
semidefinite programming. However, there are comparatively few converse results in
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the literature (e.g. those in [160], [151], [11], [155]) on guaranteed existence of such
Lyapunov functions.

In [12], the authors prove that there are globally asymptotically stable polyno-
mial vector fields (of degree as low as 2) which do not admit polynomial Lyapunov
functions. We show in this chapter that the same example in [12] does not even ad-
mit a rational Lyapunov function (Section 4.3.1). This counterexample justifies the
homogeneity assumption of our Theorem 4.3.1.

Homogeneous polynomial vector fields of degree 1 are nothing but linear systems.
In this case, it is well known that asymptotic stability is equivalent to existence
of a (homogeneous) quadratic Lyapunov function (see e.g. [112, Thm. 4.6]) and
can be checked in polynomial time. Moving up in the degrees, one can show that
homogeneous vector fields of even degree can never be asymptotically stable [88,
Sect. 17]. When the degree of f is odd and ≥ 3, testing asymptotic stability of (4.1)
is not a trivial problem. In fact, already when the degree of f is equal to 3 (and
even if we restrict f to be a gradient vector field), the problem of testing asymptotic
stability is known to be strongly NP-hard [3]. This result rules out the possibility
of a polynomial time or even pseudo-polynomial time algorithm for this task unless
P=NP. One difficulty that arises here is that tests of stability based on linearization
fail. Indeed, the linearization of f around the origin gives the identically zero vector
field. This means (see e.g. [112, Thm. 4.15]) that homogeneous polynomial vector
fields of degree ≥ 3 are never exponentially stable. This fact is independently proven
by Hahn in [88, Sect. 17].

Our main contribution in this chapter is to show that a proof of asymptotic sta-
bility for a homogeneous polynomial vector field can always be found by semidefinite
programming (Theorem 4.4.3). This statement follows from existence of a rational
Lyapunov function whose numerator is a strictly sum of squares homogeneous poly-
nomial (see Section 4.4 for a definition) and whose denominator is an even power of
the 2-norm of the state. Our result generalizes the classical converse Lyapunov theo-
rem for linear systems which corresponds to the case where the power of the strictly
sum of squares polynomial in the numerator (resp. denominator) is two (resp. zero).

Our next contribution is a negative result: We show in Proposition 4.5.1 that
unlike the case of linear systems, for homogeneous polynomial vector fields of higher
degree, one cannot bound the degree of the numerator of a rational Lyapunov function
as a function of only the degree (or even the degree and the dimension) of the input
vector field. We leave open the possibility that the degree of this numerator can be
bounded as a computable function of the coefficients of the input vector field. Such
a statement (if true), together with the fact that semidefinite feasibility problems
can be solved in finite time [163], would imply that the question of testing asymp-
totic stability for homogeneous polynomial vector fields is decidable. Decidability of
asymptotic stability for polynomial vector fields is an outstanding open question of
Arnlod; see [25], [64], [24].

In Section 4.6, we show a curious advantage that rational Lyapunov functions
can sometimes have over polynomial ones. In Proposition 4.6.1, we give a family
of homogeneous polynomial vector fields of degree 5 that all admit a low-degree
rational Lyapunov function but require polynomial Lyapunov functions of arbitrarily
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high degree. We end the chapter with some concluding remarks and future research
directions in Section 6.6.

4.2 Approximation of Homogeneous Functions by

Rational Functions

For a positive even integer k, let Hk(Rn) denote the set of continuously differentiable
homogeneous functions V : Rn → R of degree k. For a function V ∈ Hk(Rn), we
define the norm ‖.‖H as

‖V ‖H = max

{
max
x∈Sn−1

|V (x)|, max
x∈Sn−1

‖∇V (x)‖2

}
.

We prove in this section that homogeneous rational functions are dense in Hk(Rn)
for the norm ‖.‖H. We remark that there is an elegant construction by Peet [160]
that approximates derivatives of any function that has continuous mixed derivatives
of order n by derivatives of a polynomial. In contrast to that result, the construc-
tion below requires the function to only be continuously differentiable and gives a
homogeneous approximating function of degree k. This property is important for our
purposes.

Lemma 4.2.1. Let k be a positive even integer. For any function V ∈ Hk(Rn) and
any scalar ε > 0, there exist an even integer r and a homogeneous polynomial p of
degree r + k such that ∣∣∣∣∣∣∣∣V (x)− p(x)

‖x‖r

∣∣∣∣∣∣∣∣
H
≤ ε.

Proof. Fix V ∈ Hk(Rn) and ε > 0. For every integer m, define the Bernstein poly-
nomial of order m as

Bm(x) =
∑

0≤j1,...,jn≤m
V

(
2j1
m
− 1, . . . ,

2jn
m
− 1

)

·
n∏
s=1

(
m

js

)(
1 + xs

2

)js (1− xs
2

)m−js
.

The polynomial Bm has degree nm, and has the property that for m large enough,
it satisfies

sup
‖x‖≤1

|Bm(x)− V (x)| ≤ ε

1 + k
,

and sup
‖x‖≤1

‖∇Bm(x)−∇V (x)‖ ≤ ε

1 + k
.

(4.4)
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See [203, Theorem 4] for a proof. Let m be fixed now and large enough for the above
inequalities to hold. Since V (x) is an even function, the function

C(x) :=
Bm(x) +Bm(−x)

2

also satisfies (4.4). Because C(x) is even, the function

C̃(x) := ‖x‖kC
(

x

‖x‖

)
is of the form p(x)

‖x‖r , where p(x) is a homogeneous polynomial and r is an even integer.

Also, by homogeneity, the degree of p(x) is r + k.
It is clear that C and C̃ are equal on the sphere, so

sup
‖x‖=1

|C̃(x)− V (x)| ≤ ε

1 + k
.

We argue now that the gradient of C̃ is close to the gradient of V on the sphere.
For that, fix x ∈ Sn−1. By Euler’s identity for homogeneous functions

〈∇C̃(x), x〉 − 〈∇V (x), x〉 = k(C̃(x)− V (x)).

Since
|C̃(x)− V (x)| ≤ ε,

it is enough to control the part of the gradient that is orthogonal to x. More precisely,
let

πx(y) := y − 〈x, y〉x

be the projection of a vector y ∈ Rn onto the hyperplane Tx tangent to Sn−1 at the
point x. The following shows that ∇C̃ and ∇C are equal when projected on Tx:

πx(∇C̃(x)) = πx

(
k‖x‖k−2C

(
x

‖x‖

)
x

)
+ πx

(
‖x‖kJ

(
x

‖x‖

)T
∇C

(
x

‖x‖

))
= πx(kC(x)x+ (I − xxT )∇C(x))

= πx(∇C(x)).

Here, the second equation comes from the fact that ‖x‖ = 1 and that the Jacobian
of x
‖x‖ is equal to I − xxT on Sn−1, and the third equation relies on the fact that the
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projection of vector proportional to x onto Tx is zero. Therefore,

‖πx(∇C̃(x)−∇V (x))‖ = ‖πx(∇C(x)−∇V (x))‖
≤ ‖∇C(x)−∇V (x)‖

≤ ε

1 + k
.

We conclude by noting that

‖∇C̃(x)− V (x)‖ ≤ ‖πx(∇C̃(x)−∇V (x))‖
+ |〈x,∇C̃(x)−∇V (x)〉|
≤ ε.

4.3 Rational Lyapunov Functions

4.3.1 Nonexistence of rational Lyapunov functions

It is natural to wonder whether globally asymptotically stable polynomial vector fields
always admit a rational Lyapunov function. We show here that this is not the case,
hence also justifying the need for the homogeneity assumption in the statement of
our main result (Theorem 4.4.3).

It has been shown in [12] that the polynomial vector field

ẋ = −x+ xy
ẏ = −y (4.5)

is globally asymptotically stable (as shown by the Lyapunov function V (x, y) =
log(1 + x2) + y2) but does not admit a polynomial Lyapunov function. We prove
here that this vector field does not admit a rational Lyapunov function either. In-
tuitively, we show that solutions of (4.5) cannot be contained within sublevel sets
of rational functions because they can grow exponentially before converging to the
origin.

More formally, suppose for the sake of contradiction that the system had a Lya-
punov function of the form

V (x, y) =
p(x, y)

q(x, y)
,

where p(x, y) and q(x, y) are polynomials. Note first that the solution to system (4.5)
from any initial condition (x0, y0) ∈ R2 can be written explicitly:

x(t) = x0e
−tey0(1−e−t)

y(t) = y0e
−t.
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In particular, a solution that starts from (x0, y0) = (k, αk) for α, k > 1 reaches
the point (eα(k−1), α) after time

t∗ = log(k).

As t∗ > 0, the function V must satisfy

V (x(t∗), y(t∗)) < V (x0, y0),

i.e.,
p(eα(k−1), α)

q(eα(k−1), α)
<
p(k, αk)

q(k, αk)
.

Fix α > 1 and note that since V (x, α) → ∞ as x → ∞, then necessarily the
degree of x → p(x, α) is larger than the degree of x → q(x, α). We can see from
this that the left-hand side of the above inequality grows exponentially in k while the
right-hand side grows polynomially, which cannot happen.

4.3.2 Rational Lyapunov functions for homogeneous dynam-
ical systems

We now show that existence of rational Lyapunov functions is necessary for stability
of homogeneous vector fields.

Theorem 4.3.1. Let f be a homogeneous, continuously differentiable function of
degree d. Then the system ẋ = f(x) is asymptotically stable if and only if it admits a
Lyapunov function of the type

V (x) =
p(x)

(
∑n

i=1 x
2
i )
r
, (4.6)

where r is a nonnegative integer and p is a homogeneous (positive definite) polynomial
of degree 2r + 2.

Proof. The “if direction” of the theorem is a standard application of Lyapunov’s
theorem; see e.g. [112, Thm. 4.2].

For the “only if” direction, suppose f is continuously differentiable homogeneous
function of degree d, and that the system ẋ = f(x) is asymptotically stable. A result
of Rosier [179, Thm. 2] (see also [88, Thm. 57.4] [212, Thm. 36] [110, Prop. p.1246])
implies that there exists a function W ∈ H2(Rn) such that

W (x) > 0 ∀x ∈ Sn−1,

−〈∇W (x), f(x)〉 > 0 ∀x ∈ Sn−1.

Since these inequalities are strict and involve continuous functions, we may assume
that there exists a δ > 0 such that

W (x) ≥ δ and − 〈∇W (x), f(x)〉 ≥ δ ∀x ∈ Sn−1.
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Let
f∞ := max{1, max

‖x‖=1
‖f(x)‖}.

Lemma 4.2.1 proves the existence of a function V (x) of the form (4.6) that satisfies

|V (x)−W (x)| ≤ δ

2f∞
∀x ∈ Sn−1,

‖∇V (x)−∇W (x)‖ ≤ δ

2f∞
∀x ∈ Sn−1.

Fix x ∈ Sn−1. An application of the Cauchy-Schwarz inequality gives

|〈∇W (x), f(x)〉 − 〈∇V (x), f(x)〉| ≤ ‖∇W (x)−∇V (x)‖‖f(x)‖

≤ δ

2
.

Therefore,

V (x) ≥ δ

2
and − 〈∇V (x), f(x)〉 ≥ δ

2
∀x ∈ Sn−1.

4.4 An SDP Hierarchy for Searching for Rational

Lyapunov Functions

For a rational function of the type in (4.6) to be a Lyapunov function, we need the
polynomial V and

−V̇ (x) := −〈∇V (x), f(x)〉

=
−‖x‖2〈∇p(x), f(x)〉+ 2rp(x)〈x, f(x)〉

‖x‖2(r+1)
,

to be positive definite. This condition is equivalent to the polynomials in the nu-
merators of V and −V̇ being positive definite. In this section, we prove a stronger
result which shows that there always exists a rational Lyapunov function whose two
positivity requirements have “sum of squares certificates”. This is valuable because
the search over this more restricted class of positive polynomials can be carried out
via semidefinite programming while the search over all positive polynomials is NP-
hard [156].

Recall that a homogeneous polynomial h of degree 2d is a sum of squares (sos)
if it can be written as h =

∑
i g

2
i for some (homogeneous) polynomials gi. This is

equivalent to existence of a symmetric positive semidefinite matrix Q that satisfies

h(x) = m(x)TQm(x) ∀x, (4.7)
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where m(x) is the vector of all monomials of degree d. We say that h is strictly sos if
it is in the interior of the cone of sos homogeneous polynomials of degree 2d. This is
equivalent to existence of a positive definite matrix Q that satisfies (4.7). Note that
a strictly sos homogeneous polynomial is positive definite. We will need the following
Positivstellensatz due to Scheiderer.

Lemma 4.4.1 (Scheiderer [184], [185]). For any two positive definite homogeneous
polynomials h and g, there exists an integer q0 ≥ 0 such that the polynomial hgq is
strictly sos for all integers q ≥ q0.

Theorem 4.4.2. If a homogeneous polynomial dynamical system admits a rational
Lyapunov function of the form

V (x) =
p(x)

(
∑

i x
2
i )
r
,

where p(x) is a homogeneous polynomial, then it also admits a rational Lyapunov
function

W (x) =
p̂(x)

(
∑

i x
2
i )
r̂
,

where the numerators of W and −Ẇ are both strictly sos homogeneous polynomials.

Proof. The condition that V be positive definite is equivalent to p being positive
definite. The gradient of V is equal to

∇V (x) =
‖x‖2r∇p(x)− 2r‖x‖2r−2p(x)x

‖x‖4r

=
‖x‖2∇p(x)− 2rp(x)x

‖x‖2r+2
.

If we let
s(x) := ‖x‖2∇p(x)− 2rp(x)x,

then the condition that −〈∇V (x), f(x)〉 be positive definite is equivalent to
−〈s(x), f(x)〉 being positive definite.

We claim that there exists a positive integer q̂, such that

W (x) := V q̂(x)

satisfies the conditions of the theorem. Indeed, by applying Lemma 4.4.1 with g =
h = p, there exists q0, such that pq is strictly sos for all integers q ≥ q0.

Let us now examine the gradient of a function of the type V q. We have

∇V q(x) = qV q−1(x)∇V (x) = q

(
p(x)

‖x‖2r

)q−1
s(x)

‖x‖2r+2
.

Hence,

−〈∇V q(x), f(x)〉 =
q

‖x‖2rq+2
p(x)q−1〈−s(x), f(x)〉.
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Since the homogeneous polynomials

p(x) and 〈−s(x), f(x)〉

are both positive definite, by Lemma 4.4.1, there exists an integer q1 such that

p(x)q−1〈−s(x), f(x)〉

is strictly sos for all q ≥ q1. Taking q̂ = max{q0, q1} finishes the proof as we can let

p̂ = pq̂, r̂ = rq̂.

If we denote the degree of p̂ by s, then characterization (4.7) of strictly sos homo-
geneous polynomials applied to the numerator of W and its derivative tells us that
there exist positive definite matrices P and Q such that

W (x) =
〈m(x), Pm(x)〉

‖x‖2r̂
,

and

−Ẇ (x) =
〈z(x), Qz(x)〉
‖x‖2r̂+2

,

where m(x) (resp. z(x)) here denotes the vector of monomials in x of degree s
2

(resp.
s+d+1

2
). Notice that by multiplying W by a positive scalar, we can assume without

loss of generality that P � I and Q � I.
Putting Theorem 4.3.1 and Theorem 4.4.2 together, we get the main result of this

chapter.

Theorem 4.4.3. A homogeneous polynomial dynamical system ẋ = f(x) of degree d
is asymptotically stable if and only if there exist a nonnegative integer r, a positive
even integer s, with 2r < s, and symmetric matrices P � I and Q � I, such that

〈z(x), Qz(x)〉 = −2‖x‖2〈J(m(x))TPm(x), f(x)〉
+ 2rm(x)TPm(x)〈x, f(x)〉 ∀x ∈ Rn,

(4.8)

where m(x) (resp. z(x)) here denotes the vector of monomials in x of degree s
2

(resp.
s+d+1

2
), and J(m(x)) denotes the Jacobian of m(x).

For fixed integers s and r with 2r < s, one can test for existence of matrices P � I
and Q � I that satisfy (4.8) by solving a semidefinite program. This gives rise to
a hierarchy of semidefinite programs where one tries increasing values of s, and for
each s, values of r ∈ {0, . . . , s

2
− 1}.
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4.5 A Negative Result on Degree Bounds

The sizes of the matrices P and Q that appear in the semidefinite programming
hierarchy we just proposed depend on s, but not r. This motivates us to study
whether one can bound s as a function of the dimension n and the degree d of the
vector field at hand. In this section, we show that the answer to this question is
negative. In fact, we prove a stronger result which shows that one cannot bound the
degree of the numerator of a rational Lyapunov function based on n and d only (even
if one ignores the requirement that the Lyapunov function and its derivative have sos
certificates of positivity).

To prove this statement, we build on ideas by Bacciotti and Rosier [178] to con-
struct a family of 2-dimensional degree-3 homogeneous polynomial vector fields that
are asymptotically stable but necessitate rational Lyapunov functions whose numer-
ators have arbitrarily high degree.

Proposition 4.5.1. Let λ be a positive irrational real number and consider the fol-
lowing homogeneous cubic vector field parameterized by the scalar θ:(

ẋ
ẏ

)
=

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)(
−2λy(x2 + y2)− 2y(2x2 + y2)

4λx(x2 + y2) + 2x(2x2 + y2)

)
. (4.9)

Then, for 0 < θ < π, the origin is asymptotically stable. However, for any positive
integer s, there exits a scalar θ ∈ (0, π) such that the vector field in (4.9) does not
admit a rational Lyapunov function with a homogeneous polynomial numerator of
degree ≤ s and a homogeneous polynomial denominator.

The intuition behind this construction is that as θ → 0, this sequence of vector
fields converges to a limit vector field whose trajectories are periodic orbits that
cannot be contained within level sets of any rational function. This limit behavior is
formalized in the next lemma, which will be used in the proof of the above proposition.

Lemma 4.5.2. Consider the vector field(
ẋ
ẏ

)
= f(x, y) =

{
−2λy(x2 + y2)− 2y(2x2 + y2)
4λx(x2 + y2) + 2x(2x2 + y2)

(4.10)

parameterized by a scalar λ > 0. For all values of λ, the origin is a center1 of (4.10),
but for any irrational value of λ, there exist no two bivariate polynomials p and q
such that the rational function

W (x, y) :=
p(x, y)

q(x, y)

is nonzero, homogeneous, differentiable, and satisfies

〈∇W (x, y), f(x, y)〉 = 0 for all (x, y) ∈ R2.

1By this we mean that all trajectories of (4.10) go on periodic orbits which form closed curves
around the origin.
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Proof. For the proof of the first claim see [178, Prop.5.2]. Our proof technique for
the second claim is also similar to [178, Prop.5.2], except for some minor differences.
Suppose for the sake of contradiction that such a function W (x, y) exists. Let k
denote the degree of homogeneity of W . We first observe that the function

I(x, y) = (x2 + y2)(2x2 + y2)λ

satisfies 〈∇I(x, y), f(x, y)〉 = 0. Therefore, on the level set

{(x, y) ∈ R2 | I(x, y) = 1},

W (x, y) must be equal to a nonzero constant c. A homogeneity argument shows that

W (x, y) = cI(x, y)
k

2(1+λ) for all (x, y) ∈ R2.

Hence, by setting x = 1,

p(1, y) = c(1 + y2)
k

2(1+λ) (2 + y2)
kλ

2(1+λ) q(1, y) for all y ∈ R. (4.11)

Let r be the largest nonnegative integer such that

q(1, y) = (1 + y2)rq̂(y),

where q̂ is a univariate polynomial. As a result, q̂ must satisfy q̂(i) 6= 0, where
i =
√
−1. Then, from (4.11), we conclude that

p(1, y) = c(1 + y2)r+
k

2(1+λ) (2 + y2)
kλ

2(1+λ) q̂(y) for all y ∈ R. (4.12)

The function y → (2 + y2)
kλ

2(1+λ) q̂(y) can be prolonged to a holomorphic function
on the open set

O1 := C \ {y = iv| |v| ≥
√

2}.

Furthermore, since q̂(i) 6= 0, there exists an open neighborhood O2 of i where q̂
does not vanish. On the open set O1 ∩O2, the function

y → (2 + y2)
kλ

2(1+λ) q̂(y)

is holomorphic and does not vanish, and hence by (4.12), the function

y → (1 + y2)r+
k

2(1+λ)

is also holomorphic on O1 ∩ O2. As a consequence, there exist an integer n̄ and a
number α ∈ C \ {0} such that

(1 + y2)r+
k

2(1+λ)

(y − i)n̄
→ α
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as y → i. This implies that

r +
k

2(1 + λ)
= n̄

and contradicts the assumption that λ is an irrational number.

Proof of Proposition 4.5.1. Consider the positive definite Lyapunov function2

V (x, y) = (2x2 + y2)λ(x2 + y2), whose derivative along the trajectories of (4.9)
is equal to

V̇ (x, y) = − sin(θ)(2x2 + y2)λ−1(ẋ2 + ẏ2).

Since V̇ is negative definite for 0 < θ < π, it follows that for θ in this range, the
origin of (4.9) is asymptotically stable.

To establish the latter claim of the proposition, suppose for the sake of contradic-
tion that there exists an upper bound s̄ such that for all 0 < θ < π the system admits
a rational Lyapunov function

Wθ(x, y) =
pθ(x, y)

qθ(x, y)
,

where pθ and qθ are both homogeneous polynomials and pθ is of degree at most s̄
independently of θ. Note that as a Lyapunov function, Wθ must vanish at the origin,
and therefore the degree of qθ is also bounded by s̄. By rescaling, we can assume
without loss of generality that the 2-norm of the coefficients of all polynomials pθ and
qθ is 1.

Let us now consider the sequences {pθ} and {qθ} as θ → 0. These sequences reside
in the compact set of bivariate homogeneous polynomials of degree at most s̄ with the
2-norm of the coefficients equal to 1. Since every bounded sequence has a converging
subsequence, it follows that there must exist a subsequence of {pθ} (resp. {qθ}) that
converges (in the coefficient sense) to some nonzero homogeneous polynomial p0 (resp.
q0). Define

W0(x, y) :=
p0(x, y)

q0(x, y)
.

Since convergence of this subsequence also implies convergence of the associated gra-
dient vectors, we get that

Ẇ0(x, y) = 〈∇W0(x, y),

(
ẋ
ẏ

)
〉 ≤ 0.

On the other hand, when θ = 0, the vector field in (4.9) is the same as the one in
(4.10) and hence the trajectories starting from any nonzero initial condition go on
periodic orbits. This however implies that Ẇ0 = 0 everywhere and in view of Lemma
4.5.2 we have a contradiction.

2This function is not a polynomial, which can be seen e.g. by noticing that the restriction
V (x, x) = 3λ2x2(λ+1) is not a polynomial.
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Remark 7. It is possible to establish the result of Proposition 4.5.1 without having
to use irrational coefficients in the vector field. One approach is to take an irrational
number, e.g. π, and then think of a sequence of vector fields given by (4.9) that is
parameterized by both θ and λ. We let the k-th vector field in the sequence have
θk = 1

k
and λk equal to a rational number representing π up to k decimal digits. Since

in the limit as k → ∞ we have θk → 0 and λk → π, it should be clear from the
proof of Proposition 4.5.1 that for any integer s, there exists an asymptotically stable
bivariate homogeneous cubic vector field with rational coefficients that does not have
a Lyapunov p(x,y)

q(x,y)
where p and q are homogeneous and p has degree less than s.

4.6 Potential Advantages of Rational Lyapunov

Functions over Polynomial Ones

In this section, we show that there are stable polynomial vector fields for which a
polynomial Lyapunov function would need to have much higher degree than the sum
of the degrees of the numerator and the denominator of a rational Lyapunov function.
The reader can also observe that independently of the integer r, the size of the SDP
arising form Theorem 4.4.3 that searches for a rational Lyapunov function with a
numerator of degree s and a denominator of degree 2r is smaller than the size of an
SDP that would search for a polynomial Lyapunov function p of degree s + 2 (by
requiring p and −ṗ to be sums of squares), even when p is taken to be homogeneous.
Therefore, for some vector fields, a search for a rational Lyapunov function instead
of a polynomial one can be advantageous.

Proposition 4.6.1. Consider the following homogeneous polynomial vector field pa-
rameterized by the scalar θ:(

ẋ

ẏ

)
= fθ(x, y) = 2R(θ)

(
x
(
x4 + 2x2 y2 − y4

)
y
(
−x4 + 2x2 y2 + y4

)) , (4.13)

where

R(θ) :=

(
− sin(θ) − cos(θ)
cos(θ) − sin(θ)

)
.

Then, for θ ∈ (0, π), the vector field fθ admits the following rational Lyapunov func-
tion

W (x, y) =
x4 + y4

x2 + y2

and hence is asymptotically stable. However, for any positive integer s̄, there exits
a scalar θ ∈ (0, π) such that fθ does not admit a polynomial Lyapunov function of
degree ≤ s̄.

Once again, the intuition is that as θ → 0, fθ converges to a vector field f0 whose
trajectories are periodic orbits. This time however, these orbits will exactly traverse
the level sets of the rational function W and cannot be contained within level sets
of any polynomial. Our proof will utilize the following independent lemma about
univariate polynomials.
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Lemma 4.6.2. There exist no two univariate polynomials p̃ and q̃, with q̃ non-
constant, that satisfy

p̃(x2) = q̃

(
x4 + 1

x2 + 1

)
∀x ∈ R.

Proof. Assume for the sake of contradiction that such polynomials exist. For every
nonnegative scalar u, there exists a scalar x such that u = x2. Therefore,

p̃(u) = q̃

(
u2 + 1

u+ 1

)
∀u ≥ 0.

The expression above is an equality between two univariate rational functions valid
on [0,∞). Since both rational functions are well-defined on (−1,∞], the equality
holds on that interval as well:

p̃(u) = q̃

(
u2 + 1

u+ 1

)
∀u > −1.

We get a contradiction by taking u→ −1 as the left hand side converges to p̃(−1),
while the right hand side diverges to ∞.

Proof of Proposition 4.6.1. Let us first prove that W is a rational Lyapunov function
associated with the vector field fθ whenever θ ∈ (0, π). It is clear that W is positive
definite and radially unbounded. A straightforward calculation shows that

fθ(x, y) = R(θ) (x2 + y2)2 ∇W (x, y).

Hence,

−Ẇ (x, y) = −〈∇W (x, y), fθ(x, y)〉
= −(x2 + y2)2∇W (x, y)TR(θ)∇W (x, y)

= sin(θ)(x2 + y2)2‖∇W (x, y)‖2.

Note that the function ‖∇W‖2 is positive definite as

W (x, y) =
1

2
〈
(
x
y

)
,∇W (x, y)〉

and W is positive definite. This proves that when 0 < θ < π, the vector field fθ is
asymptotically stable with W as a Lyapunov function.

To prove the latter claim of the proposition, suppose for the sake of contradiction
that there exists an upper bound s̄ such that for all 0 < θ < π the system admits a
polynomial Lyapunov function of degree at most s̄. By an argument similar to that
in the proof of Proposition 4.5.1, there must exist some nonzero polynomial p0, with
p0(0) = 0, that satisfies

ṗ0(x, y) := 〈∇p0(x, y), f0(x, y)〉 ≤ 0 ∀(x, y) ∈ R2.
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We claim that p0 must be constant on the level sets of W . To prove that, consider
an arbitrary positive scalar γ and the level set

Mγ := {(x, y) ∈ R2 | W (x, y) = γ}.

Since W is homogeneous and positive definite, Mγ is closed and bounded. In addition,
f0 is continuously differentiable and does not vanish on Mγ. Moreover, trajectories
starting in Mγ remain in Mγ as

〈∇W (x, y), f0(x, y)〉 = sin(0)(x2 + y2)2‖∇W (x, y)‖2 = 0.

Hence, by the Poincaré-Bendixson Criterion [112, Lem 2.1], the set M contains a
periodic orbit of f0.

Let z1, z2 ∈Mγ. We know that the trajectory starting from z1 must visit z2. Since
ṗ0 ≤ 0, we must have p0(z1) ≤ p0(z2). Similarly, we must also have p0(z2) ≤ p0(z1),
and therefore

p0(z1) = p0(z2).

Since we now know that p0 is constant on the level sets of W , there must exist a
function g : R→ R such that

p0(x, y) = g(W (x, y)) = g

(
x4 + y4

x2 + y2

)
.

This proves that

p0(x, y) = p0(x,−y) = p0(−x, y) = p0(−x,−y).

Therefore, there exists a polynomial p such that

p0(x, y) = p(x2, y2) = g

(
x4 + y4

x2 + y2

)
. (4.14)

Setting y = 0, we get that p(x2, 0) = g(x2). Hence, p(u, 0) = g(u) for all u ≥ 0.
Taking

u =
x4 + y4

x2 + y2
,

the second equality in (4.14) gives

p(x2, y2) = p

(
x4 + y4

x2 + y2
, 0

)
.

Setting y = 1, we get that the polynomial p satisfies

p(x2, 1) = p

(
x4 + 1

x2 + 1
, 0

)
.
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If we let p̃(x) := p(x, 1) and q̃(x) := p(x, 0), then in view of Lemma 4.6.2 and the fact
that q̃ is not constant, we have a contradiction.

Example 2. Consider the vector field fθ in (4.13) with θ = 0.05. One typical tra-
jectory of this vector field is depicted in Figure 4.1. We use the modeling language
YALMIP [131] and the SDP solver mosek [22] to search for rational and polynomial
Lyapunov functions for this vector field.

Figure 4.1: A typical trajectory of the vector field fθ in (4.13) with θ = 0.05, together
with the level sets of the Lyapunov functions Wθ and pθ.

We know that for θ = 0.05, the vector field is asymptotically stable. Therefore,
by Theorem 4.4.3, the semidefinite programming hierarchy described in Section 4.4
is guaranteed to find a rational Lyapunov function. The first round to succeed corre-
sponds to (s, r) = (4, 1), and produces the feasible solution

Wθ(x, y) =
16.56x4 + 16.56y4 + 0.04x2y20.17x3y − 0.17xy3

x2 + y2

If we look instead for a polynomial Lyapunov function, i.e. r = 0, the lowest degree
for which the underlying SDP is feasible corresponds to s = 8. The Lyapunov function
that our solver returns is the following polynomial:

pθ(x, y) = 42.31x8 + 42.31y8 + 6.5xy7 − 6.5x7y − 100.94x2y6

−100.94x6y2 + 19.86x5y3 − 19.86x3y5 + 166.65x4y4.

As all bivariate nonnegative homogeneous polynomials are sums of squares, infeasi-
bility of our SDP for s = 2, 4, 6 means that fθ admits no homogeneous polynomial
Lyapunov function of degree lower than 8. Two level sets of Wθ and pθ are shown in
Figure 4.1 and they look quite similar.
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4.7 Conclusions and Future Directions

We showed in this chapter that existence of a rational Lyapunov function is necessary
and sufficient for asymptotic stability of homogeneous continuously differentiable vec-
tor fields. In the case where the vector field is polynomial, we constructed an SDP
hiearachy that is guaranteed to find this Lyapunov function. The number of variables
and constraints in this SDP hiearachy depend only on s, the degree of the numerator
of the candidate Lyapunov function, and not on r, the degree of its denominator.
To our knowledge, this theorem constitutes one of the few results in the theory of
nonlinear dynamical systems which guarantees existence of algebraic certificates of
stability that can be found by convex optimization (in fact, the only one we know of
which applies to polynomial vector fields that are not exponentially stable). Regard-
ing degree bounds, we proved that even for homogeneous polynomial vector fields of
degree 3 on the plane, the degree s of the numerator of such a rational Lyapunov
function might need to be arbitrarily high. We also gave a family of homogeneous
polynomial vector fields of degree 5 on the plane that all share a simple low-degree
rational Lyapunov function, but require polynomial Lyapunov functions of arbitrarily
high degree. Therefore, there are asymptotically stable polynomial vector fields for
which a search for a rational Lyapunov function is much cheaper than a search for a
polynomial one. We leave the following two questions for future research:

· Can r be upperbounded by a computable function of the coefficients of the
vector field f? In particular, can r always be taken to be zero? Or equivalently,
do asymptotically stable homogeneous vector fields always admit a homogeneous
polynomial Lyapunov function?

· Similarily, can s be upperbounded as a computable function of the coefficients
of the vector field f? We have shown that s cannot be upperbounded by a
function of the dimension n and the degree d of the vector field only.

Finally, while our focus in this chapter was on analysis problems, we hope that
our work also motivates further research on understanding the power and limitations
of rational Lyapunov functions for controller design problems.
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Chapter 5

A Globally Asymptotically Stable
Polynomial Vector Field with
Rational Coefficients and no Local
Polynomial Lyapunov Function

5.1 Introduction and Motivation

We are concerned in this chapter with a continuous time dynamical system

ẋ = f(x), (5.1)

where f : Rn → Rn is a polynomial and has an equilibrium point at the origin, i.e.,
f(0) = 0. Polynomial differential equations appear throughout engineering and the
sciences and the study of stability of their equilibrium points has been a problem of
long-standing interest to mathematicians and control theorists.

We recall that the origin of (5.1) is said to be a locally asymptotically stable (LAS)
equilibrium if it is stable in the sense of Lyapunov (i.e., if for every ε > 0, there exists
a δ = δ(ε) > 0 such that ‖x(0)‖ < δ ⇒ ‖x(t)‖ < ε for all t ≥ 0) and if there exists a
scalar δ̂ > 0 such that

‖x(0)‖ < δ̂ ⇒ lim
t→∞

x(t) = 0.

We say that the origin of (5.1) is a globally asymptotically stable (GAS) if it is stable
in the sense of Lyapunov and if limt→∞ x(t) = 0 for any initial condition x(0) in Rn.

We also recall (see, e.g., [112]) that the origin of (5.1) is LAS if there exists a
continuously differentiable (Lyapunov) function V : Rn → R that vanishes at the
origin and satisfies V (x) > 0 and −〈∇V (x), f(x)〉 > 0 for all x ∈ S \ {0}, where S is
a neighborhood of the origin. Moreover, if V is in addition radially unbounded (i.e.,
satisfies V (x)→∞ when ‖x‖ → ∞) and if S = Rn, then the origin is GAS. We call
a function satisfying the former (resp. the latter) requirements a local (resp. global)
Lyapunov function. It is also well known that existence of such Lyapunov functions
is not only sufficient, but also necessary for local/global asymptotic stability [112].
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Since the vector field in (5.1) is polynomial, it is natural to search for Lyaponuv
functions that are polynomials themselves. This approach has become widely popular
in the last couple of decades due to the advent of optimization-based algorithms
that automate the search for a polynomial Lyapunov function. Arguably, the most
prominent such algorithm is based on sum of squares optimization, which reduces
this search to a semidefinite program [156, 149, 95, 102, 53, 94, 211]. Alternatives
to this approach that are based on linear programming or other algebraic techniques
have also appeared in recent years [107, 8, 108, 37]. As the algorithmic construction
of polynomial Lyapunov functions has been the focus of intense research in recent
years, it is natural to ask whether existence of a Lyapunov function within this class
is guaranteed. This is the case, e.g., if the goal is to prove exponential stability of
an equilibrium point over a bounded region [160], [161]. Our focus in this chapter,
however, is on the basic question of whether asymptotic stability of an equilibrium
point implies existence of a polynomial Lyapunov function. As is well known, the
answer is positive when the degree of the vector field in (5.1) is equal to one. Indeed,
asymptotically stable linear systems always admit a quadratic Lyapunov function.

Unlike the linear case, stable polynomial vector fields of degree as low as 2 may
fail to admit a polynomial Lyapunov function. Indeed, in [12], it is shown that the
simple vector field

ẋ = −x+ xy
ẏ = −y (5.2)

is globally asymptotically stable (e.g. as certified by the Lyapunov function V (x, y) =
log(1 +x2) + y2), but does not admit a (global) polynomial Lyapunov function. Note
however, that the linearization of (5.2) around the origin is asymptotically stable,
and hence this nonlinear system admits a local quadratic Lyapunov function.

In [29, Prop. 5.2], Bacciotti and Rosier show that the vector field(
ẋ
ẏ

)
=

(
−2λy(x2 + y2)− 2y(2x2 + y2)
4λx(x2 + y2) + 2x(2x2 + y2)

)
− (x2 + y2)

(
4λx(x2 + y2) + 2x(2x2 + y2)
2λy(x2 + y2)− 2y(2x2 + y2)

) (5.3)

is globally asymptotically stable for any scalar λ ≥ 0 (e.g. as certified by the Lya-
punov function Vλ(x, y) = (x2+y2)(2x2+y2)λ), but does not admit a local polynomial
Lyapunov function for any λ which is irrational.1 However, the validity of this state-
ment crucially relies on the parameter λ being irrational. Indeed, for any rational
value of λ ≥ 0, the system admits a global polynomial Lyaponuv function, which is
e.g. simply an appropriate integer power of Vλ.

Our contribution in this chapter is to give an example of a (globally) asymptot-
ically stable polynomial vector field with rational coefficients that does not admit a
local polynomial (or even analytic) Lyaponuv function. Our construction is inspired
by and is similar to that of Bacciotti and Rosier [29]. However, by adapting their

1In fact, they show that for irrational λ, the system (5.3) does not even admit a local analytic
Lyaponuv function.
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underlying proof technique, we are able to prove stability with a Lyapunov function
which is the ratio of two polynomials. This allows us to use only rational coefficients
in the construction of the vector field.2

Our interest in studying polynomial vector fields with rational coefficients partly
stems from the fact that in practice, most (if not all) vector fields that are analyzed
on a computer (e.g. by an optimization-based algorithm) have rational coefficients.
Therefore, if it was true that such vector fields always had polynomial Lyapunov
functions, one could restrict attention to this function class for all practical purposes
and use techniques such as sum of squares optimization to algorithmically find these
Lyapunov functions. Because of this practical motivation, existence of the coun-
terexample that we present in this chapter was regarded as a significant unresolved
question in the community; see e.g. the ending paragraph in [129, Sect. IV].

Polynomial vector fields with rational coefficients are also important from the
viewpoint of complexity analysis in the standard Turing model. For example, it is
not known whether the problem of testing local asymptotic stability is decidable for
this class of vector fields. Indeed, this is an outstanding open problem suggested by
Arnold, which appears e.g. in [69], [25]:

“Let a vector field be given by polynomials of a fixed degree, with rational
coefficients. Does an algorithm exist, allowing to decide, whether the
stationary point is stable?”

In [69], Arnold is quoted to have conjectured that the answer to the above question
is negative:

“My conjecture has always been that there is no algorithm for some suf-
ficiently high degree and dimension.”

This conjecture also motivates the example in this chapter: if it was true that
LAS polynomial vector fields with rational coefficients always admitted polynomial
Lyaponuv functions of a computable degree, then the problem of testing stability
would become decidable. This is because one can e.g. use the quantifier elimination
theory of Tarski and Seidenberg [196], [187] to test, in finite time, whether a polyno-
mial vector field admits a local polynomial Lyaponuv function of a given degree.

We end our introduction by noting that, interestingly, there is a parallel to these
questions in the study of switched linear systems in discrete time. There, the problem
of testing asymptotic stability is similarly not known to be decidable [47, Problem
10.2], [105]. One can show, however, that if the so called “finiteness conjecture”
[120] is true for rational matrices, then asymptotic stability becomes decidable. This
conjecture is known to be false over the reals [91], but is currently unresolved for
rational matrices [106].

2Note that by rescaling, one can always change a polynomial vector field with rational coefficients
to a polynomial vector field with integer coefficients without changing the properties of stability or
validity of a candidate Lyapunov function.
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5.2 The Main Result

Our contribution in this chapter is to prove the following theorem.

Theorem 5.2.1. The polynomial vector field(
ẋ
ẏ

)
= f(x, y), (5.4)

with

f(x, y) =

(
−2y(−x4 + 2x2y2 + y4)

2x(x4 + 2x2y2 − y4)

)
− (x2 + y2)

(
2x(x4 + 2x2y2 − y4)

2y(−x4 + 2x2y2 + y4)

)
,

is globally asymptotically stable but does not admit an analytic Lyapunov function
even locally.

Figure 5.1: A typical trajectory of the vector field in (5.4) and the level sets of the
Lyapunov function W in (5.5).

Proof. We prove that the vector field in (5.4) is globally asymptotically stable by
means of the rational Lyapunov function defined as

W (x, y) =
x4 + y4

x2 + y2
∀(x, y) 6= (0, 0), and W (0, 0) = 0. (5.5)

Note that the function W is continuously differentiable on R2, positive definite (i.e.,
satisfies W (x, y) > 0 for all (x, y) 6= (0, 0)), and radially unbounded. Radial un-
boundedness can be seen, e.g., by noting that since ||(x, y)T ||2 ≤ 21/4||(x, y)T ||4 for
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all (x, y) ∈ R2, we have

W (x, y) =
||(x, y)T ||44
||(x, y)T ||22

≥ 1

2
||(x, y)T ||22, ∀(x, y) ∈ R2.

Let us examine the gradient of W . A straightforward calculation gives

∇W (x, y) =
1

(x2 + y2)2

(
a(x, y)
b(x, y)

)
,

where a(x, y) = 2x(x4 + 2x2y2 − y4) and b(x, y) = 2y(−x4 + 2x2y2 + y4).

If we let f0 =

(
−b
a

)
, and f1 = −(x2 + y2)

(
a
b

)
, then f = f0 + f1, and

〈∇W, f〉 = 〈∇W, f0〉+ 〈∇W, f1〉

= 0− a2 + b2

x2 + y2
.

We show that 〈∇W, f〉 is negative when (x, y) 6= (0, 0) by observing that for every
(x, y) ∈ R2 \ {(0, 0)}, a(x, y) and b(x, y) cannot both be zero. Indeed, if a(x, y) =
b(x, y) = 0 for some (x, y) ∈ R2, then

ya(x, y) + xb(x, y) = 8(xy)3 = 0,

therefore x = 0 or y = 0. If x = 0 for example (the case y = 0 is similar), then
b(x, y) = 2y5, and hence y = 0 as well. This shows that

〈∇W (x, y), f(x, y)〉 < 0 ∀(x, y) 6= (0, 0),

and hence W is a global Lyapunov function which proves that the vector field is GAS.
Let us now show that f does not admit an analytic Lyapunov function locally.

Assume for the sake of contradiction that such a function p : R2 → R exists. By
analyticity, p =

∑∞
k=0 pk, where pk is a homogeneous polynomial of degree k. Let pk0

be the first non-vanishing term. Note that k0 ≥ 2 as

p(0, 0) = 0⇒ p0 = 0,

p ≥ 0, p(0, 0) = 0⇒ ∇p(0, 0) = (0, 0)T ⇒ p1(x, y) = 0,∀(x, y) ∈ R2.

Here, the first implication follows from the fact that the origin is a global minimum
for p. Observe now that

〈∇p, f〉 = 〈∇
∞∑

k=k0

pk, f0 + f1〉

= 〈∇pk0 , f0〉+ q,
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where q := 〈∇pk0 , f1〉+
∑∞

k=k0+1〈∇pk, f0 + f1〉. Note that all terms in q have degree
higher than the degree of the (homogeneous) polynomial 〈∇pk0 , f0〉. This is because
f1 has higher degree than f0 and the index of the sum in the definition of q starts at
k0+1. Since 〈∇p, f〉 ≤ 0 (as we are assuming that p is a Lyapunov function), and since
〈∇pk0 , f0〉 constitutes the terms of 〈∇p, f〉 of lowest order, it must be that 〈∇pk0 , f0〉
is nonpositive in a small enough neighborhood of the origin. But as 〈∇pk0 , f0〉 is
homogeneous, this implies that

〈∇pk0(x, y), f0(x, y)〉 ≤ 0 ∀(x, y) ∈ R2. (5.6)

We now claim that the (homogeneous) polynomial pk0 must be constant on the
1-level set of W , which we denote by

M := {(x, y) ∈ R2 | W (x, y) = 1}.

Since W is continuous (resp. radially unbounded), it follows that M is closed
(resp. bounded). In addition, f0 is continuously differentiable and does not vanish on
M , as we have already argued that a(x, y) and b(x, y) cannot simultaneously vanish
except at the origin. Moreover, trajectories of the vector field f0 that start in M
remain in M as one can verify that

〈∇W, f0〉 = 0.

Hence, by the Poincaré-Bendixson Criterion (see e.g. [112, Lemma 2.1]), the set M
contains a periodic orbit of f0.

Since M is a one-dimensional connected manifold, the trajectory of f0 starting
from a point z0 ∈ M on this periodic orbit can only return to z0 by traversing all
points in M. Hence, the periodic orbit coincides with M . In view of the fact that
〈∇pk0 , f0〉 ≤ 0 as established in (

Note that the constant c must be nonzero or else, by homogeneity, the polynomial
pk0 would be identically zero, contradicting the definition of k0. As a consequence,

pk0 and cW
k0
2

are two nonzero homogeneous functions of degree k0 that are equal on M . Since
M intersects all the lines passing through the origin, and since any homogeneous
function u : R2 → R of degree k0 satisfies u(λx, λy) = λk0u(x, y) for all λ ∈ R and all
(x, y) ∈ R2, we get that

pk0(x, y) = cW
k0
2 (x, y) ∀(x, y) ∈ R2.

This implies the following polynomial identity

(x2 + y2)k0p2
k0

(x, y) = c2(x4 + y4)k0 ,
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which gives a contradiction as (x, y) = (
√
−1, 1) makes only the left-hand side vanish.

The vector field in (5.4) is a polynomial of degree 7 in two variables. We leave
open the problem of determining the minimum degree of a polynomial vector field
with rational coefficients for which the statement of Theorem 5.2.1 holds. Note also
that although the vector field in (5.4) does not admit a polynomial Lyapunov function,
it admits a rational one (i.e., a ratio of two polynomials). We leave the question of
determining whether LAS polynomial vector fields with rational coefficients admit
a local rational Lyapunov function for future research. We have recently shown in
[4] that one cannot hope for a global rational Lyapunov function in general. On the
other hand, [4] also shows that if the vector field in question is homogeneous, then
asymptotic stability implies existence of a rational Lyaponuv function.
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Chapter 6

Learning Dynamical Systems with
Side Information

6.1 Motivation and problem formulation

In several safety-critical applications, one has to learn the behavior of an unknown
dynamical system from noisy observations of a very limited number of trajectories.
For example, to autonomously land an airplane that has just gone through engine
failure, limited time is available to learn the modified dynamics of the plane before
appropriate control action can be taken. Similarly, when a new infectious disease
breaks out, few observations are initially available to understand the dynamics of
contagion. In situations of this type where data is limited, it is essential to exploit
“side information”—e.g. physical laws or contextual knowledge—to assist the task of
learning.

More formally, our interest in this paper is to learn a continuous-time dynamical
system of the form

ẋ(t) = f(x(t)), (6.1)

over a given compact set Ω ⊂ Rn from noisy observations of a limited number of its
trajectories. Here, ẋ(t) denotes the time derivative of the state x(t) ∈ Rn at time
t. We assume that the unknown vector field f that is to be learned is continuously
differentiable over an open set containing Ω, an assumption that is often met in
applications. In our setting, we have access to a training set of the form

D := {(xi,yi), i = 1, . . . , N}, (6.2)

where xi ∈ Ω (resp. yi ∈ Rn) is a possibly noisy measurement of the state of the
dynamical system (resp. of f(xi)). Typically, this training set is obtained from
observation of a few trajectories of (6.1). The vectors yi could be either directly
accessible (e.g., from sensor measurements) or approximated from the state variables
using a finite-difference scheme.

Finding a vector field fF that best agrees with the training set D among a par-
ticular class F of continuously-differentiable functions amounts to solving the opti-
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mization problem

fF ∈ arg min
p∈F

∑
(xi,yi)∈D

`(p(xi),yi), (6.3)

where `(·, ·) is some loss function that penalizes deviation of p(xi) from yi. For
instance, `(·, ·) could simply be the `2 loss function

`2(u, v) := ‖u− v‖2 ∀u, v ∈ Rn,

though the computational machinery that we propose can readily handle various other
convex loss functions (see Section 6.3).

In addition to fitting the training set D, we desire for our learned vector field
fF to generalize well, i.e., to be consistent as much as possible with the behavior of
the unknown vector field f on all of Ω. Indeed, the optimization problem in (6.3)
only dictates how the candidate vector field should behave on the training data. This
could easily lead to overfitting, especially if the function class F is large and the
observations are limited. Let us demonstrate this phenomenon by a simple example.

Example 3. Consider the two-dimensional vector field

f(x1, x2) := (−x2, x1)T . (6.4)

The trajectories of the system ẋ(t) = f(x(t)) from any initial condition are given by
circular orbits. In particular, if started from the initial condition xinit = (1, 0)T , the
trajectory is given by x(t, xinit) = (cos(t), sin(t))T . Hence, for any function g : R2 →
R2, the vector field

h(x) := f(x) + (x2
1 + x2

2 − 1)g(x) (6.5)

agrees with f on the sample trajectory x(t, xinit). However, the behavior of the trajec-
tories of h depends on the arbitrary choice of the function g. If g(x) = x for instance,
the trajectories of h starting outside of the unit disk diverge to infinity. See fig. 6.1
for an illustration.

Figure 6.1: Streamplot of the vector field f in
(6.4) (in blue), together with two sample trajec-
tories of the vector field h in (6.5) with g(x) = x
when started from (1, 0)T (drawn in black) and
from (1.01, 0)T (drawn in red). The trajecto-
ries of f and h match exactly when started from
(1, 0)T , but get arbitrarily far from each other
when started from (1.01, 0)T .

To address the issue of insufficiency of data and to avoid overfitting, we would like
to exploit the fact that in many applications, one may have contextual information
about the vector field f without knowing f precisely. We call such contextual infor-
mation side information. Formally, every side information is a subset S of the set
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of all continuously-differentiable functions that the vector field f is known to belong
to. Equipped with a list of side information S1, . . . , Sk, our goal is to replace the
optimization problem in (6.3) with

fF∩S1∩···∩Sk ∈ arg min
p∈F∩S1∩···∩Sk

∑
(xi,yi)∈D

`(p(xi),yi), (6.6)

i.e., to find a vector field fF∩S1∩···∩Sk ∈ F that is closest to f on the training set D
and also satisfies the side information S1, . . . , Sk that f is known to satisfy.

6.1.1 Outline and contributions of the paper

In the remainder of this paper, we build on the mathematical formalism we have
introduced thus far and make problem (6.6) more concrete and amenable to compu-
tation. In Section 6.2, we identify six notions of side information that are commonly
encountered in practice and that have attractive convexity properties, therefore lead-
ing to a convex optimization formulation of problem (6.6). In Section 6.3, we show
that when the function class F is chosen as the set of polynomial functions of a given
degree, then any combination of our six notions of side information can be enforced by
semidefinite programming. The derivation of these semidefinite programs leverages
ideas from sum of squares optimization, a concept that we briefly review in the same
section for the convenience of the reader. In Section 6.4, we demonstrate the applica-
bility of our approach on three examples from epidemiology, classical mechanics, and
cell biology. In each example, we show how common sense and contextual knowledge
translate to the notions of side information we present in this paper. Furthermore, in
each case, we show that by imposing side information via semidefinite programming,
we can learn the behavior of the unknown dynamics from a very limited set of ob-
servations. In our epidemiology example, we also show the benefits of our approach
for a downstream task of optimal control (Section 6.4.4). In Section 6.5, we study
the question of how well trajectories of a continuously differentiable vector field that
satisfies some side information can be approximated by trajectories of a polynomial
vector field that satisfies the same side information either exactly or approximately.
We end the paper with a discussion of future research directions in Section 6.6.

6.1.2 Related work

The idea of using sum of squares and semidefinite optimization for verifying various
properties of a known dynamical system has been the focus of much research in
the control and optimization communities [156, 46, 124, 49]. Our work borrows
some of these techniques to instead impose a desired set of properties on a candidate
dynamical system that is to be learned from data.

Learning dynamical systems from data is an important problem in the field of
system identification. Various classes of vector fields have been proposed throughout
the years as candidates for the function class F in (6.3); e.g., reproducing kernel
Hilbert spaces [189, 190, 52], Guassian mixture models [113], and neural networks
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[209, 80]. Some recent approaches to learning dynamical systems from data impose
additional properties on the candidate vector field. These properties include contrac-
tion [189, 74], stabilizability [191], and stability [119], and can be thought of as side
information. In contrast to our work, imposing these properties requires formulation
of nonconvex optimization problems, which can be hard to solve to global optimality.
Furthermore, these references impose the desired properties only on sample trajec-
tories (as opposed to the entire space where the properties are known to hold), or
introduce an additional layer of nonconvexity to impose the constraints globally.

We also note that the problem of fitting a polynomial vector field to data has
appeared e.g. in [183], though the focus there is on imposing sparsity of the coefficients
of the vector field as opposed to side information. The closest work in the literature
to our work is that of Hall on shape-constrained regression [89, Chapter 8], where
similar algebraic techniques are used to impose constraints such as convexity and
monotonicity on a polynomial regressor. See also [63] for some statistical properties
of these regressors and several applications. Our work can be seen as an extension of
this approach to a dynamical system setting.

6.2 Side information

In this section, we identify six types of side information which we believe are useful
in practice (see, e.g., Section 6.4) and that lead to a convex formulation of problem
(6.6). For example, we will see in Section 6.3 that semidefinite programming can be
used to impose any list of side information constraints of the six types below on a
candidate vector field that is parameterized as a polynomial function. The set Ω that
appears in these definitions is a compact subset of Rn over which we would like to
learn an unknown vector field f . Throughout this paper, the notation f ∈ C◦1(Ω)
denotes that f is continuously differentiable over an open set containing Ω.

· Interpolation at a finite set of points. For a set of points {(xi,yi) ∈ Ω×Rn}mi=1,
we denote by Interp({(xi, yi)}mi=1)1 the set of vector fields f ∈ C◦1(Ω) that satisfy
f(xi) = yi for i = 1, . . . ,m. An important special case is the setting where the
vectors yi are equal to 0. In this case, the side information is the knowledge of
certain equilibrium points of the vector field f .

· Group symmetry. For two given linear representations2 σ, ρ : G → Rn×n of a
finite group G, with σ(g)x ∈ Ω ∀(x, g) ∈ Ω × G, we define Sym(G, σ, ρ,) to be the
set of vector fields f ∈ C◦1(Ω) that satisfy the symmetry condition

f(σ(g)x) = ρ(g)f(x) ∀x ∈ Ω, ∀g ∈ G.

For example, let Ω be the unit ball in Rn and consider the group F2 = {1,−1},
with scalar multiplication as the group operation. If we take σF2 and ρF2 to be two

1To simplify notation, we drop the dependence of the side information on the set Ω.
2Recall that a linear representation of a group G on the vector space Rn is any group homomor-

phism from G to the group GL(Rn) of invertible n× n matrices. That is, a linear representation is
a map µ : G→ GL(Rn) that satisfies µ(gg′) = µ(g)µ(g′) ∀g, g′ ∈ G.
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linear representations of F2 defined by σF2(1) = −σF2(−1) = ρF2(1) = ρF2(−1) = I,
where I denotes the n × n identity matrix, then the set Sym(F2, σF2 , ρF2 ,) (resp.
Sym(F2, σF2 , σF2 ,)) is exactly the set of even (resp. odd) vector fields in C◦1(Ω). As
another example, consider the group Sn of all permutations of the set {1, . . . , n},
with composition as the group operation. If we take σSn to be the map that assigns
to an element p ∈ Sn the permutation matrix P obtained by shuffling the columns
of the identity matrix according to p, and ρSn to be the constant map that assigns
the identity matrix to every p ∈ Sn, then the set Sym(Sn, σSn , ρSn ,) is the set
of symmetric functions in C◦1(Ω), i.e., functions in C◦1(Ω) that are invariant under
permutations of their arguments. We remark that a finite combination of side infor-
mation of type Sym can often be written equivalently as a single side information
of type Sym. For example, the set Sym(F2, σF2 , ρF2 ,∩) Sym(Sn, σSn , ρSn ,) of even
symmetric functions in C◦1(Ω) is equal to Sym(F2 × Sn, σ, ρ,), where F2 × Sn is the
direct product of F2 and Sn, σ is given by σ(g, g′) = σF2(g)σSn(g′)∀(g, g′) ∈ F2×Sn,
and ρ is the constant map that assigns the identity matrix to every element in
F2 × Sn.

· Coordinate nonnegativity. For given sets Pi, Ni ⊆ Ω, i = 1, . . . , n, we denote by
Pos({(Pi, Ni)}ni=1) the set of vector fields f ∈ C◦1(Ω) that satisfy

fi(x) ≥ 0 ∀x ∈ Pi, and fi(x) ≤ 0 ∀x ∈ Ni, ∀i ∈ {1, . . . , n}.

These constraints are useful when we know that certain components of the state
vector are increasing or decreasing functions of time in some regions of the state
space.3

· Coordinate directional monotonicity. For given sets Pij, Nij ⊆ Ω, i, j =
1, . . . , n, we denote by Mon({(Pij, Nij)}ni,j=1) the set of vector fields f ∈ C◦1(Ω)
that satisfy

∂fi
∂xj

(x) ≥ 0 ∀x ∈ Pij, and
∂fi
∂xj

(x) ≤ 0 ∀x ∈ Nij, ∀i, j ∈ {1, . . . , n}.

See fig. 6.2 for an illustration of a simple example.

x1

x2

f(x1, x2)

Figure 6.2: An example of the behavior of
a vector field f : R2 → R2 satisfying
Mon({(Pij, Nij)}2

i,j=1) with P21 = N11 = [0, 1]×
{0} (i.e., ∂f2

∂x1
(x1, 0) ≥ 0 and ∂f1

∂x1
(x1, 0) ≤

0 ∀x1 ∈ [0, 1]), and with the rest of the sets Pij
and Nij equal to the empty set.

3There is no loss of generality in assuming that each coordinate of the vector field is nonnegative
or nonpositive on a single set since one can always reduce multiple sets to one by taking unions. The
same comment applies to the side information of coordinate directional monotonicity that is defined
next.
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In the special case where Pij = Rn and Nij = ∅ for all i, j ∈ {1, . . . , n} with i 6= j,
and Pii = Nii = ∅ for all i ∈ {1, . . . , n}, the side information is the knowledge of the
following property of the vector field f which appears frequently in the literature
on monotone systems [193]:

∀xinit, x̃init ∈ Rn, xinit ≤ x̃init =⇒ x(t, xinit) ≤ x(t, x̃init) ∀t ≥ 0.

Here, the inequalities are interpreted elementwise, and the notation x(t, xinit) is
used as before to denote the trajectory of the vector field f starting from the initial
condition xinit.

· Invariance of a set. A set B ⊆ Ω is invariant under a vector field f if any trajectory
of the dynamical system ẋ(t) = f(x(t)) which starts in B stays in B forever. In
particular, if B = {x ∈ Rn | hj(x) ≥ 0, j = 1, , . . . ,m} for some differentiable
functions hj : Rn → R, then invariance of the set B under the vector field f implies
the following constraints (see Figure 6.3 for an illustration):

∀j ∈ {1, . . . ,m}, ∀x ∈ B, [hj(x) = 0 =⇒ 〈f(x),∇hj(x)〉 ≥ 0] . (6.7)

Indeed, suppose for some x̃ ∈ B and for some j ∈ {1, . . . ,m}, we had hj(x̃) = 0 but
〈f(x̃),∇hj(x̃)〉 = ḣ(x̃) < 0, then h(x(t, x̃)) < 0 for t small enough, implying that
x(t, x̃) 6∈ B for t small enough. It is also straightforward to verify that if the “≥” in
(6.7) were replaced with a “>”, then the resulting condition would be sufficient for
invariance of the setB under f . In fact, it follows from a theorem of Nagumo [145, 43]
that condition (6.7) is necessary and sufficient for invariance of the set B under f if
B is convex, the functions h1, . . . , hm are continuously-differentiable, and for every
point x on the boundary of B, the vectors {∇hj(x) | j ∈ {1, . . . ,m}, hj(x) = 0} are
linearly independent.4 Given sets Bi = {x ∈ Rn | hij(x) ≥ 0, j = 1, , . . . ,mi}, i =
1, . . . , r, defined by differentiable functions hij : Rn → R, we denote by Inv({Bi}ri=1)
the set of all vector fields f ∈ C◦1(Ω) that satisfy (6.7) for B ∈ {B1, . . . , Br}.

B

∇hi(x̄)

f(x̄)

∇hj(x̂)

f(x̂)
Figure 6.3: An example of the behavior
of a vector field f : R2 → R2 satisfying
Inv({B}), where B := {x ∈ R2 | h1(x) ≥
0, . . . , hm(x) ≥ 0} is the set shaded in gray.

· Gradient and Hamiltonian systems. A vector field f ∈ C◦1(Ω) is said to be a
gradient vector field if there exists a differentiable, scalar-valued function V : Rn →
R such that

f(x) = −∇V (x) ∀x ∈ Ω. (6.8)

Typically, the function V is interpreted as a notion of potential or energy associated
with the dynamical system ẋ(t) = f(x(t)). Note that the value of the function V

4In an earlier draft of this paper [6], we had incorrectly claimed that condition eq. (6.7) is equiv-
alent to invariance of the set B, while in fact additional assumptions are needed for its sufficiency.
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decreases along the trajectories of this dynamical system. We denote by Grad the
subset of C◦1(Ω) consisting of gradient vector fields.

A vector field f ∈ C◦1(Ω) over n state variables (x1, . . . , xn) is said to be Hamiltonian
if n is even and there exists a differentiable scalar-valued function H : Rn → R such
that

fi(p, q) = −∂H
∂qi

(p, q), fn
2

+i(p, q) =
∂H

∂pi
(p, q), ∀(p, q) ∈ Ω, ∀i ∈

{
1, . . . ,

n

2

}
,

where p := (x1, . . . , xn
2
)T and q := (xn

2
+1, . . . ,xn)T . The states p and q are usually

referred to as generalized momentum and generalized position respectively, following
terminology from physics. Note that a Hamiltonian system conserves the quantity
H along its trajectories. We denote by Ham the subset of C◦1(Ω) consisting of
Hamiltonian vector fields. For related work on learning Hamiltonian systems, see [14,
85].

6.3 Learning Polynomial Vector Fields Subject to

Side Information

In this paper, we take the function class F in (6.6) to be the set of polynomial vector
fields of a given degree d. We denote this function class by

Pd := {p : Rn → Rn | pi is a (scalar-valued) polynomial of degree d for i = 1, . . . , n}.

Furthermore, we assume that the set Ω over which we would like to learn the unknown
dynamical system, the sets Pi, Ni in the definition of Pos({(Pi, Ni)}ni=1), the sets
Pij, Nij in the definition of Mon({Pij, Nij}ni,j=1), and the sets Bi in the definition of
Inv({Bi}ri=1) are all closed semialgebraic. We recall that a closed basic semialgebraic
set is a set of the form

Λ := {x ∈ Rn| gi(x) ≥ 0, i = 1, . . . ,m}, (6.9)

where g1, . . . , gm are (scalar-valued) polynomial functions, and that a closed semial-
gebraic set is a finite union of closed basic semialgebraic sets.

Our choice of working with polynomial functions to describe the vector field and
the sets that appear in the side information definitions are motivated by two reasons.
The first is that polynomial functions are expressive enough to represent or approx-
imate a large family of functions and sets that appear in applications. The second
reason, which shall be made clear shortly, is that because of some connections be-
tween real algebra and semidefinite optimization, several side information constraints
that are commonly available in practice can be imposed on polynomial vector fields
in a numerically tractable fashion.

With our aforementioned choices, the optimization problem in (6.6) has as decision
variables the coefficients of a candidate polynomial vector field p : Rn → Rn. When
the notion of side information is restricted to the six types presented in Section 6.2,
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and under the mild assumptions that Ω is full dimensional (i.e, that it contains an
open set), the constraints of (6.6) are of the following two types:

(i) Affine constraints in the coefficients of p.

(ii) Constraints of the type
q(x) ≥ 0 ∀x ∈ Λ, (6.10)

where Λ is a given closed basic semialgebraic set of the form (6.9), and q is a
(scalar-valued) polynomial whose coefficients depend affinely on the coefficients
of the vector field p.

For example, membership to Interp({(xi, yi)}mi=1), Sym(G, σ, ρ,), Grad, or Ham
can be enforced by affine constraints,5 while membership to Pos({(Pi, Ni)}ni=1),
Inv({Bi}ri=1), or Mon({(Pij, Nij)}ni,j=1) can be cast as constraints of the type (6.10).
Unfortunately, imposing the latter type of constraints is NP-hard already when q is
a quartic polynomial and Λ = Rn, or when q is quadratic and Λ is a polytope (see,
e.g., [144]).

An idea pioneered to a large extent by Lasserre [122] and Parrilo [157] has been to
write algebraic sufficient conditions for (6.10) based on the concept of sum of squares
polynomials. We say that a polynomial h is a sum of squares (sos) if it can be
written as h =

∑
i q

2
i for some polynomials qi. Observe that if we succeed in finding

sos polynomials σ0, σ1, . . . , σm such that the polynomial identity

q(x) = σ0(x) + σ1(x)g1(x) + . . .+ σm(x)gm(x) (6.11)

holds (for all x ∈ Rn), then, clearly, the constraint in (6.10) must be satisfied. When
the degrees of the sos polynomials σi are bounded above by an integer r, we refer
to the identity in (6.11) as the degree-r sos certificate of the constraint in (6.10).
Conversely, the following celebrated result in algebraic geometry [172] states that if
g1, . . . , gm satisfy the so-called “Archimedean property” (a condition slightly stronger
than compactness of the set Λ), then positivity of q on Λ guarantees existence of a
degree-r sos certificate for some integer r large enough.

Theorem 6.3.1 (Putinar’s Positivstellensatz [172]). Let

Λ = {x ∈ Rn | g1(x) ≥ 0, . . . , gm(x) ≥ 0}

and assume that the collection of polynomials {g1, . . . , gm} satisfies the Archimedean
property, i.e., there exists a positive scalar R such that

R2 −
n∑
i=1

x2
i = s0(x) + s1(x)g1(x) + . . .+ sm(x)gm(x),

5To see why membership of a polynomial vector field p to Grad can be enforced by affine
constraints (a similar argument works for membership to Ham), observe that if there exists a
continuously-differentiable function V : Rn → R such that p(x) = −∇V (x) for all x in a full-
dimensional set Ω, then the function V is necessarily a polynomial of degree equal to the degree of
p plus one. Furthermore, equality between two polynomial functions over a full-dimensional set can
be enforced by equating their coefficients.

105



where s0, . . . , sm are sos polynomials.6 For any polynomial q, if q(x) > 0 ∀ x ∈ Λ,
then

q(x) = σ0(x) + σ1(x)g1(x) + . . .+ σm(x)gm(x),

for some sos polynomials σ0, . . . , σm.

The computational appeal of the sum of squares approach stems from the fact
that the search for sos polynomials σ0, σ1, . . . , σm of a given degree that verify the
polynomial identity in (6.11) can be automated via semidefinite programming (SDP)7.
This is true even when some coefficients of the polynomial q are left as decision
variables. This claim is a straightforward consequence of the following well-known
fact (see, e.g., [156]): A polynomial h of degree 2d is a sum of squares if and only
if there exists a symmetric matrix Q which is positive semidefinite and verifies the
identity

h(x) = z(x)TQz(x), (6.12)

where z(x) denotes the vector of all monomials in x of degree less than or equal to
d. Identity (6.12) can be written in an equivalent manner as a system of

(
n+d
d

)
linear

equations involving the entries of the matrix Q and the coefficients of the polynomial
h. These equations come from equating the coefficients of the polynomials appearing
on the left and right hand sides of (6.12). The problem of finding a positive semidefin-
tie matrix Q whose entries satisfy these linear equations is a semidefinite program.
For implementation purposes, there exist modeling languages, such as YALMIP [131],
SOSTOOLS [166], or SumOfSquares.jl [208], that accept sos constraints on polyno-
mials directly and do the conversion to a semidefinite program in the background.
See e.g. [126, 46, 90] for more background on sum of squares techniques.

To end up with a semidefinite programming formulation of problem (6.6), we
also need to take the loss function ` that appears in the objective function to be
semidefinite representable (i.e., we need its epigraph to be the projection of the feasible
set of a semidefinite program). Luckily, many common loss functions in machine
learning are semidefinite representable. Examples of such loss functions include (i) any
`p norm for a rational number p ≥ 1, or for p =∞, (ii) any convex piece-wise linear
function, (iii) any sos-convex polynomial (see e.g. [93] for a definition), and (iv) any
positive integer power of the previous three function classes.

6.4 Illustrative Experiments

In this section, we present numerical experiments from four application domains to
illustrate our methodology. The first three applications are learning experiments and

6If Λ is known to be contained in a ball of radius R, one can add the redundant constraint
R2−

∑n
i=1 x

2
i ≥ 0 to the description of Λ, and then the Archimedean property will be automatically

satisfied.
7Semidefinite programming is the problem of minimizing a linear function of a symmetric matrix

over the intersection of the cone of positive semidefinite matrices with an affine subspace. Semidef-
inite programs can be solved to arbitrary accuracy in polynomial time; see [202] for a survey of the
theory and applications of this subject.
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Figure 6.4: Streamplot of the vector field
in (6.13). We consider this vector field to
be the ground truth and unknown to us.
We would like to learn it over [0, 1]2 from
noisy snapshots of a single trajectory start-
ing from (0.7, 0.3)T (plotted inred).

the last one involves an optimal control component. In all of our experiments, we use
the SDP-based approach explained in Section 6.3 to tackle problem (6.6) and take
our loss function `(·, ·) in (6.6) to be `(u, v) = ‖u−v‖2

2 ∀u, v ∈ Rn. The added value
of side information for learning dynamical systems from data will be demonstrated
in these experiments.

6.4.1 Diffusion of a contagious disease

The following dynamical system has appeared in the epidemiology literature (see, e.g.,
[18]) as a model for the spread of a sexually transmitted disease in a heterosexual
population:

ẋ(t) = f(x(t)),where x(t) ∈ R2 and f(x) =

(
−a1x1 + b1(1− x1)x2

−a2x2 + b2(1− x2)x1

)
. (6.13)

Here, the quantity x1(t) (resp. x2(t)) represents the fraction of infected males (resp.
females) in the population. The parameter ai (resp. bi) denotes the recovery rate
(resp. the infection rate) in the male population when i = 1, and in the female
population when i = 2. We take

(a1, b1, a2, b2) = (0.05, 0.1, 0.05, 0.1) (6.14)

and plot the resulting vector field f in fig. 6.4. We suppose that this vector field is
unknown to us, and our goal is to learn it over Ω := [0, 1]2 from a few noisy snapshots
of a single trajectory. More specifically, we have access to the training data set

D :=

{(
x(ti, xinit), f(x(ti, xinit)) + 10−4

(
εi,1
εi,2

))}20

i=1

, (6.15)

where x(t, xinit) is the trajectory of the system (6.13) starting from the initial condition
xinit = (0.7, 0.3)T , the scalars ti := i represent a uniform subdivision of the time
interval [0, 20], and the scalars ε1,1, ε1,2, . . . , ε20,1, ε20,2 are independently sampled from
the standard normal distribution.
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Following our approach in Section 6.3, we parameterize our candidate vector field
p : R2 → R2 as a polynomial function. We choose the degree of this polynomial
to be d = 3. The degree d is taken to be larger than 2 because we do not want to
assume knowledge of the degree of the true vector field in (6.13). This makes the task
of learning more difficult; see the end of this subsection where we also learn a vector
field of degree 2 for comparison.

In absence of any side information, one could solve the least-squares problem

min
p∈Pd

∑
(xi,yi)∈D

‖p(xi)− yi‖2
2 (6.16)

to find a polynomial of degree d that best agrees with the training data. For this
experiment only, and for educational purposes, we include a template code using the
library SumOfSquares.jl [208] of the Julia programming language and demonstrate
how the code changes as we impose side information constraints. We initiate our
template with the following code that solves optimization problem eq. (6.16).

# Input: vectors X1, X2, Y1, Y2 ∈ R20 representing the training set in (6.15),
# where X1 = {x1(ti, xinit)}20

i=1, X2 = {x2(ti, xinit)}20
i=1,

# Y1 = {f1(x(ti, xinit)) + 10−4εi,1}20
i=1, and Y2 = {f2(x(ti, xinit)) + 10−4εi,2}20

i=1

model = SOSModel ( s o l v e r ) # solver could be any SDP solver,
# e.g., Mosek [22], SDPT3 [199], CSDP [48]

@polyvar x1 x2 # Define state variables x1, x2

d = 3 # Construct vector of monomials
z = monomials ( [ x1 , x2 ] , 0 : d ) # in (x1, x2) up to degree d
@var iable ( model , p1 , Poly ( z ) ) # Declare a polynomial vector field
@var iable ( model , p2 , Poly ( z ) ) # whose coefficients are decision variables
e r r o r v e c = [ p [ 1 ] . (X1 , X2 ) − Y1 ; # Vector of individual terms appearing

p [ 2 ] . (X1 , X2 ) − Y2 ] # in the objective of eq. (6.16)
@object ive model Min e r r o r v e c ′ ∗ e r r o r v e c
# Side in fo rmat ion c o n s t r a i n t s go here
# . . .
opt imize ! ( model ) # Solve the optimization problem

Julia template code for learning dynamical systems with side information.

The solution to problem (6.16) returned by the solver MOSEK [22] is plotted in
fig. 6.5b. Observe that while the learned vector field replicates the behavior of the
true vector field f on the observed trajectory, it differs significantly from f on the
rest of the unit square. To remedy this problem, we leverage the following list of side
information that is available from the context without knowing the exact structure
of f .

· Equilibrium point at the origin (Interp). Naturally, if no male or female is
infected, there would be no contagion and the number of infected individuals will
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(a) The true vec-
tor field (unknown
to us)

(b) No side information (c) Interp (d) Interp∩ Inv (e) Interp∩ Inv∩Mon

Figure 6.5: Streamplot of the vector field in (6.13) (fig. 6.5a) along with streamplots
of polynomial vector fields of degree 3 that are optimal to (6.16) with different side
information constraints appended to it (figs. 6.5b to 6.5e).

remain at zero. This side information corresponds to our vector field p having an
equilibrium point at the origin, i.e., p(0, 0) = 0. Note from figs. 6.5a and 6.5b that
the true vector field f in (6.13) satisfies this constraint, but the vector field learned
by solving the least-squares problem in (6.16) does not. We can impose this linear
constraint by simply adding the following lines of code to our template:

@constra int model p1(0, 0) == 0
@constra int model p2(0, 0) == 0

The vector field resulting from solving this new problem is plotted in fig. 6.5c.

· Invariance of the box [0, 1]2 (Inv). The state variables (x1, x2) of the dynam-
ics in (6.13) represent fractions of infected individuals and as such, the vector x(t)
should be contained in the box [0, 1]2 at all times t ≥ 0. Note that this property
is violated by the vector fields learned in figs. 6.5b and 6.5c. Mathematically, the
invariance of the unit box is equivalent to the four (univariate) polynomial nonneg-
ativity constraints

p2(x1, 0) ≥ 0, p2(x1, 1) ≤ 0 ∀x1 ∈ [0, 1],

p1(0, x2) ≥ 0, p1(1, x2) ≤ 0 ∀x2 ∈ [0, 1].
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These constraints imply that the vector field points inwards on the four edges of
the unit box. We replace each one of these four constraints with the corresponding
degree-2 sos certificate of the type in (6.11). For instance, we replace the constraint

p2(x1, 0) ≥ 0 ∀x1 ∈ [0, 1]

with linear and semidefinite constraints obtained from equating the coefficients of
the two sides of the polynomial identity

p2(x1, 0) = x1s0(x1) + (1− x1)s1(x1), (6.17)

and requiring that the newly-introduced (univariate) polynomials s0 and s1 be
quadratic and sos. Obviously, the algebraic identity (6.17) is sufficient for non-
negativity of p2(x1, 0) over [0, 1]; in this case, it also happens to be necessary [134].
The code in Julia for imposing the degree-2 sos certificate in (6.17) is as follows:

@var iable ( model , s1 , Poly ( [ 1, x1, x
2
1 ] ) ) # Declare decision polynomial s1

@var iable ( model , s2 , Poly ( [ 1, x1, x
2
1 ] ) ) # Declare decision polynomial s2

@constra int ( model , s1 , in SOSCone ( ) ) # Enforce s1 to be sos
@constra int ( model , s2 , in SOSCone ( ) ) # Enforce s2 to be sos

p o l y n o m i a l i d e n t i t y = # Enfroce polynomial
p2((x1, x2)⇒ (0, x2)) − x1∗s1−(1−x1 )∗s2 # identity in eq. (6.17)

@constra int ( model , c o e f f i c i e n t s ( p o l y n o m i a l i d e n t i t y ).== 0)

The output of the semidefinite program which imposes the invariance of the unit
box and the equilibrium point at the origin is plotted in fig. 6.5d.

· Coordinate directional monotonicity (Mon). Naturally, one would expect
that if the fraction of infected males rises in the population, the rate of infection
of females should increase. Mathematically, this observation is equivalent to the
constraint that

∂p2

∂x1

(x) ≥ 0 ∀x ∈ [0, 1]2.

Similarly, swapping the roles played by males and females leads to the constraint

∂p1

∂x2

(x) ≥ 0 ∀x ∈ [0, 1]2.

Note that this property is violated by the vector fields learned in figs. 6.5b to 6.5d.
Just as in the previous bullet point, we replace each of the above two nonnegativity
constraints with its corresponding degree-2 sos certificate. To do this, we represent
the closed basic semialgebraic set [0, 1]2 with the polynomial inequalities

x1 ≥ 0, x2 ≥ 0, 1− x1 ≥ 0, 1− x2 ≥ 0.
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The Julia code for imposing this side information is similar to the one of the previous
bullet point and therefore omitted. fig. 6.5e demonstrates the vector field learned
by our semidefinite program when all side information constraints discussed thus far
are imposed.

Note from figs. 6.5b to 6.5e that as we add more side information, the learned
vector field respects more and more properties of the true vector field f . In particular,
the learned vector field in fig. 6.5e is quite similar qualitatively to the true vector
field in fig. 6.5a even though only noisy snapshots of a single trajectory are used for
learning.

It is interesting to observe what would happen if we try to learn a degree-2 vector
field from the same training set using the list of side information discussed in this
subsection. The outcome of this experiment is plotted in fig. 6.6. Note that with the
equilibrium-at-the-origin side information, the behavior of the learned vector field of
degree 2 is already quite close to that of the true vector field. fig. 6.6e shows that when
we impose all side information, the learned vector field is almost indistinguishable
from the true vector field (even though, once again, only noisy snapshots of a single
trajectory are used for learning). The vector field plotted in fig. 6.6e is given by

pInterp∩ Inv∩Mon,deg 2(x1, x2) =

(
0.038x2

1 − 0.100x1x2 − 0.009x2
2 − 0.084x1 + 0.119x2

−0.101x1x2 + 0.003x2
2 + 0.101x1 − 0.052x2

)
,

which is indeed very close to the vector field in (6.13).

(a) The true vec-
tor field (unknown
to us)

(b) No side information (c) Interp (d) Interp∩ Inv (e) Interp∩ Inv∩Mon

Figure 6.6: Streamplot of the vector field in (6.13) (fig. 6.5a) along with streamplots
of polynomial vector fields of degree 2 that are optimal to (6.16) with different side
information constraints appended to it (figs. 6.6b to 6.6e).
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`
θ

gravity

Figure 6.7: The simple pendulum and the streamplot of its vector field. We would
like to learn this vector field over [−π, π]2 from 10 noisy snapshots coming from two
trajectories.

6.4.2 Dynamics of the simple pendulum

In this subsection, we consider the dynamics of the simple pendulum, i.e., a mass
m hanging from a massless rod of length ` (see fig. 6.7). The state variables of this
system are given by x = (θ, θ̇), where θ is the angle that the rod makes with the
vertical axis and θ̇ is the time derivative of this angle. By convention, the angle
θ ∈ [−π, π] is positive when the mass is to the right of the vertical axis, and negative
otherwise. By applying Newton’s second law of motion, the equation

θ̈(t) = −g
`

sin(θ(t))

for the dynamics of the pendulum can be derived, where g here is the acceleration
due to gravity. This is a one-dimensional second-order system that we convert to a
first-order system as follows:

ẋ(t) = f(x(t)) where x(t) :=

(
θ(t)

θ̇(t)

)
and f(θ, θ̇) :=

(
θ̇

−g
`

sin θ

)
. (6.18)

We take the vector field in (6.18) with g = ` = 1 to be the ground truth. We
observe from this vector field a noisy version of two trajectories x(t, x1

init) and x(t, x2
init)

sampled at times ti = 3i
5

, where i ∈ {0, . . . , 4}, with x1
init = (π

4
, 0)T and x2

init = (9π
10
, 0)T

(see fig. 6.7). More precisely, we assume that our training set (with a slightly different
representation of its elements) is given by

D :=
2⋃

k=1


θ(ti, xkinit)

θ̇(ti, x
k
init)

θ̈(ti, x
k
init)

+ 10−2εi,k


4

i=0

, (6.19)

where the εi,k (for k = 1, 2 and i = 0, . . . , 4) are independent 3× 1 standard normal
vectors.
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(a) The true vector field
(unkown to us)

(b) No side information (c) Sym

(d) Sym∩Pos (e) Sym∩Pos∩Ham

Figure 6.8: Streamplot of the vector field in (6.18) (fig. 6.8a) along with stream-
plots of polynomial vector fields of degree 5 that best agree with the data (in the
least-squares sense) and obey an increasing number of side information constraints
(figs. 6.8b to 6.8e). In each case, the trajectories of the learned vector field starting
from the same two initial conditions as the trajectories observed in the training set
are plotted in black.
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−π
4

0

π
4
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θ
(t
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0 10t

Training Data

Ground truth

Learned vector field

Figure 6.9: Comparison of the trajectory of the simple pendulum in (6.18) starting
from (π

4
, 0)T (dotted) with the trajectory from the same initial condition of the poly-

nomial vector field of degree 5 that best agrees with the data (in the least-squares
solution) in the absence of side information (left), and subject to side information
constraints Sym∩Pos∩Ham (right).

We are interested in learning the vector field f over the set Ω := [−π, π]2 from
the training data in (6.19). We parameterize our candidate vector field p : R2 → R2

as a degree-5 polynomial. Note that p1(θ, θ̇) = θ̇, just from the meaning of our state
variables. The only unknown is therefore the polynomial p2(θ, θ̇).

In absence of side information, one can solve a least-squares problem that finds a
polynomial of degree 5 that best agrees with the training data. As it can be seen in
fig. 6.8b, the resulting vector field is very far from the true vector field and is unable
to even replicate the observed trajectories when started from the same two initial
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conditions. To learn a better model, we describe a list of side information which
could be derived from contextual knowledge without knowing the true vector field f .

· Sign symmetry (Sym). The pendulum obviously behaves symmetrically with
respect to the vertical axis (plotted with a dotted line in fig. 6.7). We therefore
require our candidate vector field p to satisfy the same symmetry condition

p(−θ,−θ̇) = −p(θ, θ̇) ∀(θ, θ̇) ∈ Ω.

Note that this is an affine constraint in the coefficients of the polynomial p, and that
the true vector field f in (6.18) satisfies this constraint.

· Coordinate nonnegativity (Pos). We know that the force of gravity pulls the
pendulum’s mass down and pushes the angle θ towards 0. This means that the
angular velocity θ̇ decreases when θ is positive and increases when θ is negative.
Mathematically, we must have

p2(θ, θ̇) ≤ 0 ∀(θ, θ̇) ∈ [0, π]× [−π, π] and p2(θ, θ̇) ≥ 0 ∀(θ, θ̇) ∈ [−π, 0]× [−π, π].

We replace each one of these constraints with their corresponding degree-4 sos cer-
tificate (see the definition following equation (6.11)). (Note that, because of the
previous symmetry side information, we actually only need to impose one of these
two constraints.)

· Hamiltonian (Ham). In the simple pendulum model, there is no dissipation of
energy (through friction for example), so the total energy

E(θ, θ̇) =
1

2
ml2θ̇2 +mgl(1− cos(θ)) (6.20)

is conserved. The two terms appearing in this equation can be interpreted physically
as the kinetic and the potential energy of the system. Furthermore, the total energy
E satisfies

θ̇(t) =
1

m`2

∂E

∂θ̇
(θ(t), θ̇(t)), and θ̈(t) = − 1

m`2

∂E

∂θ
(θ(t), θ̇(t)).

The simple pendulum system is therefore a Hamiltonian system, with the associated
Hamiltonian function E

m`2
. Note that neither the vector field in (6.18) describing the

dynamics of the simple pendulum nor the associated Hamiltonian are polynomial
functions. In our learning procedure, we use only the fact that the system is Hamil-
tonian, i.e., that there exists a function H such that

p1(θ, θ̇) =
∂H

∂θ̇
(θ, θ̇), and p2(θ, θ̇) = −∂H

∂θ
(θ, θ̇), (6.21)
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but not the exact form of this Hamiltonian. Since we are parameterizing the candi-
date vector field p as a degree-5 polynomial, the function H must be a (scalar-valued)
polynomial of degree 6. The Hamiltonian structure can thus be imposed by adding
affine constraints on the coefficients of p, or by directly learning H and obtaining p
from (6.21).

Observe from fig. 6.8 that as more side information is added, the behavior of the
learned vector field gets closer to the truth. In particular, the solution returned by
our semidefinite program in fig. 6.8e is almost identical to the true dynamics in fig. 6.7
even though it is obtained only from 10 noisy samples on two trajectories. fig. 6.9
shows that even if we start from an initial condition from which we have made partial
trajectory observations, using side information can lead to better predictions for the
future of the trajectory.

6.4.3 Growth of cancerous tumor cells

Figure 6.10: Streamplot of the vector field
in eq. (6.23) describing the time evolution
of the volume N of a cancerous tumor and
the host’s carrying capacity K (in cubic
centimeters). We consider this vector field
to be the ground truth and unkown to us.
We try to learn it over [0, 2]2 from noisy
measurements of three trajectories (plot-
ted in red).

In this subsection, we consider a model governing the time evolution of the volume N
of a cancerous tumor inside a human body [180]. Cancerous tumors depend for their
development on availability of the so-called Endothelial cells, the supply of which is
characterized by a quantity called the carrying capacity K. Intuitively, K, which has
the same unit as N , is proportional to the physical and energetic resources available
for cell growth.

Two common modeling assumptions in cancer cell biology are that (i) the growth
rate of the tumor decreases as the tumor grows, and (ii) that the volume of the tumor
increases (resp. decreases) if it is below (resp. above) the carrying capacity. We follow
the dynamics proposed in [180], which in contrast to prior works in that literature,
also models the time evolution of the carrying capacity. The dynamics reads(

Ṅ(t)

K̇(t)

)
= f(N(t), K(t)), (6.22)
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where f : R2 → R2 is given by

f1(N,K) :=
µN

ν

[
1−

(
N

K

)ν]
, f2(N,K) := ωN − γN

2
3K. (6.23)

Here, µ, ν, γ and ω are positive parameters. The dynamics of N is motivated by the so-
called generalized logistic differential equation; the term ωN models the influence of
the tumor on the Endothelial cells via short-range stimulators, and the term −γN 2

3K
models this same influence via long-range inhibitors. See [180] for more details.

Having an accurate model of the growth dyanmics of cancerous tumors is crucial
for the follow-up task of designing treatment plans, e.g., via radiation therapy. We
hope that in the future leveraging side information can lead to learning more accurate
models directly from patient data (as opposed to postulating an exact functional form
such as (6.23)). For the moment however, we take (6.23) with the following parameters
to be the ground truth:

(µ, ν, γ, ω) =
1

10
(1, 5, 1, 2).

See fig. 6.10 for a streamplot of the corresponding vector field.
We consider the task of learning the vector field f over the compact set Ω := [0, 2]2

from noisy snapshots of three trajectories. Each trajectory was started from a random
initial conditions xkinit := (Nk

init, K
k
init) (with k = 1, 2, 3) inside Ω and sampled at times

ti = i/20, with i = 0, . . . , 19 (see fig. 6.10). More precisely, we have access to the
following training data:

D :=
{(

(N(ti, x
k
init),K(ti, x

k
init)), (Ṅ(ti, x

k
init) + 10−4εi,k,1, K̇(ti, x

k
init) + 10−4εi,k,2)

)}
0≤i<20,1≤k≤3

, (6.24)

where the εi,k,l (for i = 0, . . . , 19, k = 1, . . . , 3, and l = 1, 2) are independent standard
normal variables. We parameterize our candidate vector field p as a degree-5 polyno-
mial. Without any side infromation, fitting this candidate vector field to the data in
eq. (6.24) via a least-squares problem leads to the vector field plotted in fig. 6.11b.
Once again, the vector field obtained in this way is very far from the true vector field.

To do a better job at learning, we impose the side information constraints listed
below that come from expert knowledge in the tumor growth literature (see, e.g.,
[180, 192, 92]):

· A mix between coordinate nonnegativity and coordinate directional
monotonicity (Pos - Mon). As stated in [180], “one of the few near-universal
observations about solid tumors is that almost all decelerate, i.e., reduce their
specific growth rate Ṅ

N
, as they grow larger.”

Based on this contextual knowledge, our candidate vector field p should satisfy

1

N

∂p1

∂N
(N,K)− 1

N2
p1(N,K) ≤ 0 ∀N ∈ (0, 2], ∀K ∈ [0, 2].
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(a) The true vector field
(unknown to us)

(b) No side information (c) Pos -Mon

(d) Pos -Mon∩ Inv (e) Pos -Mon∩ Inv∩Pos (f) Pos -Mon∩ Inv∩Pos
∩ Interp

Figure 6.11: Streamplot of the vector field in (6.23) (fig. 6.11a) along with stream-
plots of polynomial vector fields of degree 5 that best agree with the data (in the
least-squares sense) and obey an increasing number of side information constraints
(figs. 6.11b to 6.11f).

Since the state variable N is nonnegative at all times, we can clear denominators to
obtain the constraint

N
∂p1

∂N
(N,K)− p1(N,K) ≤ 0 ∀(N,K) ∈ [0, 2]2.

This is a polynomial nonnegativity constraint over a closed basic semialgebraic set.

· Invariance of the nonnegative orthant (Inv). The state variables N and K
quantify volumes, and as such, should be nonnegative at all times. This corresponds
to the nonnegativity constraints

p2(N, 0) ≥ 0 ∀N ∈ [0, 2], p1(0, K) ≥ 0 ∀K ∈ [0, 2].

· Coordinate nonnegativity (Pos). As mentioned before, the rate of change Ṅ
in the tumor volume is nonnegative when the carrying capacity K exceeds N , and
nonpositive otherwise [180]. Mathematically, we must have

p1(N,K) ≥ 0 ∀N ∈ [0, 2], ∀K ∈ [N, 2],
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p1(N,K) ≤ 0 ∀N ∈ [0, 2], ∀K ∈ [0, N ].

· Equilibrium point at the origin (Interp). The tumor does not grow if the
volume of cancerous cells and the carrying capacity are both zero. This corresponds
to the constraint p(0, 0) = 0.

We observe from fig. 6.11 that as more side information is added, the behavior of
the learned vector field gets closer and closer to the ground truth. In particular, the
solution returned by our semidefinite program in fig. 6.11f is very close to the true
dynamics in fig. 6.10.

6.4.4 Following learning with optimal control

In this subsection, we revisit the contagion dynamics (6.13) and study the effect of
side information on policy decisions to contain an outbreak. Suppose that by an
initial screening of a random subset of the population, it is estimated that a fraction
0.5 (resp. 0.4) of males (resp. females) are infected with the disease. We would like
to contain the outbreak by performing daily widespread testing of the population.
We introduce two control decision variables u1 and u2, representing respectively the
fraction of the population of males and females that are tested per unit of time. We
suppose that testing slows down the spread of the disease (due e.g. to appropriate
action that can be taken on the positive cases) as follows:

ẋ(t) = f(x(t))−
(
u1x1

u2x2

)
, (6.25)

where f(x(t)) is the unknown dynamics of the spread of the disease in the absence of
any control.

We suppose that the monetary cost of testing a fraction u1 of males and u2 of
females is given by α(u1 + u2) for some known positive scalar α. Our goal is to
minimize the sum

c(u1, u2) := x1(T, x̂init) + x2(T, x̂init) + α(u1 + u2), (6.26)

of the total number x1(T, x̂init) + x2(T, x̂init) of infected individuals at the end of a
desired time period T , and the monetary cost α(u1 + u2) of our control law. Here,
x1(t, x̂init) and x2(t, x̂init) evolve according to (6.25) when started from the point
x̂init = (0.5, 0.4)T . In our experiments, we take T = 20, α = 0.4, and f to be the
vector field in (6.13) with parameters in (6.14).

Given access to the vector field f , one could simply design an optimal control law
(u∗1, u

∗
2) that minimizes the cost function c(u1, u2) in (6.26) by gridding the control

space [0, 1]2, and computing c(u1, u2) for every point of the grid. Indeed, for a given
(u1, u2), c(u1, u2) can be computed by simulating the dynamics in (6.25) from the
initial condition x̂init. The optimal control law obtained by following this strategy is
depicted in Figure 6.12 together with the graph of the function c(u1, u2).
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Figure 6.12: The graph of the
function c(u1, u2) in (6.26) with
T = 20, α = 0.4, and f as in
(6.13) with parameters in (6.14).
The minimizer of the function
c(u1, u2), which corresponds to
the optimal control law, is indi-
cated with a blue arrow. The
control laws that are optimal for
dynamics learned from a single
trajectory of f with different side
information constraints are indi-
cated with black arrows.

We now consider the same setup as Section 6.4.1, where we do not know the vector
field f , but have observed 20 noisy samples of a single trajectory of it starting from
(0.7, 0.3)T (c.f. (6.15)). We design our control laws instead for the four polynomial
vector fields of degree 3 that were learned in Section 6.4.1 with no side information,
with Interp, with Interp∩ Inv, and with Interp∩ Inv∩Mon. This is done by
following the procedure described in the previous paragraph, but using the learned
vector field instead of f . The corresponding four control laws are depicted in Fig-
ure 6.12 with black arrows. We emphasize that while the control laws are computed
from the learned vector fields, their associated costs in Figure 6.12 are computed by
applying them to the true vector field. It is interesting to observe that adding side
information constraints during the learning phase leads to the design of better control
laws.

From Table 6.1, we see that if we had access to the true vector field, an optimal
control law would lead to the eradication of the disease by time T . The first four rows
of this table demonstrate the fraction of infected males and females at time T when
control laws that are optimal for dynamics learned with different side information
constraints are applied to the true vector field. It is interesting to note that with
no side information, a large fraction of the population remains infected, whereas
control laws computed with three side information constraints are able to eradicate
the disease almost completely.

6.5 Approximation Results

In this section, we present some density results for polynomial vector fields that
obey side information. This provides some theoretical justification for our choice of
parameterizing our candidate vector fields as polynomial functions.
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Side information x1(T, x̂init) x2(T, x̂init)
None 0.45 0.40

Interp 0.41 0.29
Interp∩ Inv 0.31 0.12

Interp∩ Inv∩Mon 0.01 0.01
True vector field 0.00 0.00

Table 6.1: The first four rows indicate the fraction of infected males and females
at the end of the period T when a control law, optimal for dynamics learned from
a single trajectory with different side information constraints, is applied to the true
vector field. The last row indicates the fraction of infected males and females at time
T resulting from applying the optimal control law computed with access to the true
dynamics.

More precisely, we are interested in the following question: Given a continuously-
differentiable vector field f satisfying a list of side information constraints from Sec-
tion 6.2, is there a polynomial vector field that is “close” to f and satisfies the same
list of side information constraints? For the purpose of learning dynamical systems,
arguably the most relevant notion of “closeness” between two vector fields is one that
measures how differently their corresponding trajectories can behave when started
from the same initial condition. More formally, we fix a compact set Ω ⊂ Rn and
a time horizon T , and we define the following notion of distance between any two
vector fields f, g ∈ C◦1(Ω):

dΩ,T (f, g) := sup
(t,xinit)∈S

max {‖xf (t,xinit)− xg(t,xinit)‖2, ‖ẋf (t,xinit)− ẋg(t,xinit)‖2} ,

(6.27)
where xf (t,xinit) (resp. xg(t,xinit)) is the trajectory starting from xinit ∈ Ω and
following the dynamics of f (resp. g), and

S := {(t,xinit) ∈ [0, T ]× Ω | xf (s,xinit), xg(s,xinit) ∈ Ω ∀s ∈ [0, t]}. (6.28)

The reason why in the definition of dΩ,T , we take the supremum over S instead of
over [0, T ]×Ω is to ensure that the trajectories that appear in (6.27) are well defined.

In Section 6.5.1, we show that under some assumptions that are often met in
practice, polynomial vector fields can be made arbitrarily close to any continuously-
differentiable vector field f (in the sense of (6.27)), even if they are required to satisfy
one side information constraint that f is known to satisfy. In Section 6.5.2, we drop
our assumptions and generalize this approximation result to any list of side informa-
tion constraints at the price of allowing an arbitrarily small error in the satisfaction
of these constraints. Furthermore, we show that the approximate satisfaction of side
information can be certified by a sum of squares proof.
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6.5.1 Approximating a vector field while (exactly) satisfying
one side information constraint

The following theorem is the main result of this section. We will need the following
definition for a subcase of this theorem: Given a collection of sets A1, . . . , Ar, we
define G(A1, . . . , Ar) to be the graph on r vertices labeled by the sets A1, . . . , Ar,
where two vertices Ai and Aj are connected if Ai ∩ Aj 6= ∅.

Theorem 6.5.1. For any compact set Ω ⊂ Rn, time horizon T > 0, desired accuracy
ε > 0, and vector field f ∈ C◦1(Ω) which satisfies one of the following side information
constraints (see Section 6.2):

(i) Interp({(xi, yi)}mi=1), where x1, . . . , xm ∈ Ω,

(ii) Sym(G, σ, ρ,),

(iii) Pos({(Pi, Ni)}ni=1), where for each i ∈ {1, . . . , n}, Pi ∩Ni = ∅,

(iv) Mon({(Pij, Nij)}ni,j=1), where for each i, j ∈ {1, . . . , n}, the sets Pij and Nij

belong to different connected components of the graph G(Pi1, Ni1, . . . , Pin, Nin),

(v) Inv({Bi}ri=1), where the sets Bi are pairwise nonintersecting, and defined as
Bi := {x ∈ Rn | hij(x) ≥ 0, j = 1, . . . ,mi} for some concave continuously-
differentiable functions hij that satisfy

∀i ∈ {1, . . . , r}, ∃xi ∈ Bi such that hij(x
i) > 0 for j = 1, . . . ,mi,

(vi) Grad,

(vi’) Ham,

there exists a polynomial vector field p : Rn → Rn that satisfies the same side infor-
mation constraint as f and has dΩ,T (f, p) ≤ ε.

Before we present the proof, we recall the classical Stone-Weierstrass approxima-
tion theorem. Note that while the theorem is stated here for scalar-valued functions,
it readily extends to vector-valued ones.

Theorem 6.5.2. (see, e.g., [194]) For any compact set Ω ⊂ Rn, scalar ε > 0, and
continuous function f : Ω→ R, there exists a polynomial p : Rn → R such that

max
x∈Ω
|f(x)− p(x)| ≤ ε.

For two vector fields f, g : Rn → Rn and a set Ω ⊆ Rn, let us define

‖f − g‖Ω := max
x∈Ω
‖f(x)− g(x)‖2.
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The following proposition relates this quantity to the notion of distance dΩ,T (f, g)
defined in (6.27). We recall that for a scalar L ≥ 0, a vector field f is said to be
L-Lipschitz over Ω if

‖f(x)− f(y)‖2 ≤ L‖x− y‖2 ∀x, y ∈ Ω.

Note that any vector field f ∈ C◦1(Ω) is L-Lipschitz over a compact set Ω for some
nonnegative scalar L.

Proposition 6.5.3. For any compact set Ω ⊂ Rn, time horizon T > 0, and two
vector fields f, g ∈ C◦1(Ω), we have

‖f − g‖Ω ≤ dΩ,T (f, g) ≤ max{TeLT , 1 + LTeLT}‖f − g‖Ω,

where L ≥ 0 is any scalar for which either f or g is L-Lipschitz over Ω.

To present the proof of this proposition, we need to recall the Grönwall-Bellman
inequality.

Lemma 6.5.4 (Grönwall-Bellman inequality [35, 112]). Let I = [a, b] denote a
nonempty interval on the real line. Let u, α, β : I → R be continuous functions
satisfying

u(t) ≤ α(t) +

∫ t

a

β(s)u(s) ds ∀t ∈ I.

If α is nondecreasing and β is nonnegative, then

u(t) ≤ α(t)e
∫ t
a β(s) ds ∀t ∈ I.

Proof of proposition 6.5.3. We fix a compact set Ω ⊂ Rn, a time horizon T > 0, and
vector fields f, g ∈ C◦1(Ω), with f being L-Lipschitz over Ω for some scalar L ≥ 0. To
see that the first inequality holds, note that for any xinit ∈ Ω, ẋf (0,xinit) = f(xinit)
and ẋg(0,xinit) = g(xinit). Therefore, ‖f − g‖Ω ≤ dΩ,T (f, g).

For the second inequality, fix (t, xinit) ∈ S, where S is defined in (6.28). Let us
first bound ‖xf (t, xinit)− xg(t, xinit)‖2. By definition of xf and xg, we have

xf (t, xinit)− xg(t, xinit) =

∫ t

0

f(xf (s, xinit))− g(xg(s, xinit))ds

=

∫ t

0

f(xf (s, xinit))− f(xg(s, xinit)) ds

+

∫ t

0

f(xg(s, xinit))− g(xg(s, xinit)) ds.
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Using the triangular inequality, we get

‖xf (t, xinit)− xg(t, xinit)‖2 ≤
∫ t

0

‖f(xf (s, xinit))− f(xg(s, xinit))‖2 ds

+

∫ t

0

‖f(xg(s, xinit))− g(xg(s, xinit))‖2 ds.

(6.29)

Because the function f is L-Lipschitz over Ω, we have

‖f(xf (s, xinit))− f(xg(s, xinit))‖2 ≤ L‖xf (s, xinit)− xg(s, xinit)‖2 ∀s ∈ [0, t].

Furthermore, we know that for all s ∈ [0, t], xg(s, xinit) ∈ Ω, and therefore

‖f(xg(s, xinit))− g(xg(s, xinit))‖2 ≤ ‖f − g‖Ω.

We can hence further bound the left hand side of (6.29) as

‖xf (t, xinit)− xg(t, xinit)‖2 ≤ L

∫ t

0

‖xf (s, xinit)− xg(s, xinit)‖2 ds+ t‖f − g‖Ω.

By Lemma 6.5.4, we get

‖xf (t, xinit)− xg(t, xinit)‖2 ≤ teLt‖f − g‖Ω. (6.30)

Next, we bound the quantity‖ẋf (t, xinit)− ẋg(t, xinit)‖2, which can be expressed in
terms of the vector fields f and g as ‖f(xf (t, xinit))− g(xg(t, xinit))‖2. We have

‖f(xf (t, xinit))− g(xg(t, xinit))‖2 ≤ ‖f(xf (t, xinit))− f(xg(t, xinit))‖2

+ ‖f(xg(t, xinit))− g(xg(t, xinit))‖2

≤ L‖xf (t, xinit)− xg(t, xinit)‖2 + ‖f − g‖Ω

≤ (1 + LteLt)‖f − g‖Ω,

(6.31)

where the first inequality follows from the triangular inequality, the second from the
definition of ‖ · ‖Ω and the fact that f is L-Lipschitz over Ω, and the third one from
(6.30).

Putting (6.30) and (6.31) together, and using the fact that t ≤ T , we have

max {‖xf (t, xinit)− xg(t, xinit)‖2, ‖f(xf (t, xinit))− g(xg(t, xinit))‖2}
≤ max{teLt, 1 + LteLt}‖f − g‖Ω

≤ max{TeLT , 1 + LTeLT}‖f − g‖Ω.

Taking the supremum over (t, xinit) ∈ S, we get

dΩ,T (f, g) ≤ max{TeLT , 1 + LTeLT}‖f − g‖Ω.
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Proof of Theorem 6.5.1. Let us fix a compact set Ω ⊂ Rn, a time horizon T > 0, and
a desired accuracy ε > 0. Let f ∈ C◦1(Ω) be a vector field that satisfies any one of
the side information constraints stated in the theorem. Note that f is L-Lipschitz
over Ω for some L ≥ 0. We claim that for any δ > 0, there exists a polynomial vector
field p : Rn → Rn that satisfies the same side information constraint as f and the
inequality

‖f − p‖Ω ≤ δ.

By Proposition 6.5.3, if we take

δ = ε/max{TeLT , 1 + LTeLT}, (6.32)

this shows that there exists a polynomial vector field p : Rn → Rn that satisfies the
same side information as f and the inequality

dΩ,T (f, p) ≤ ε.

We now give a case-by-case proof of our claim above depending on which side
information f satisfies. Throughout the rest of the proof, the constant δ is fixed as
in (6.32).

· Case (i): Suppose f ∈ Interp({(xi, yi)}mi=1), where x1, . . . , xm ∈ Ω. Without
loss of generality, we assume that the points xi are all different, or else we can discard
the redundant constraints. Let δ′ be a positive constant that will be fixed later. By
theorem 6.5.2, there exists a polynomial vector field q that satisfies ‖f − q‖Ω ≤ δ′.
We claim that there exists a polynomial q̃ of degree m− 1 such that

(q + q̃)(xi) = yi i = 1, . . . ,m, (6.33)

and ‖q̃‖Ω ≤ Cδ′, where C is a constant depending only on the points xi and the set
Ω. Indeed, (6.33) can be viewed as a linear system of equations where the unknowns
are the coefficients of q̃ in some basis. For example, if we let N =

(
n+m−1

n

)
and

q̃coeff ∈ RN×n be the matrix whose j-th column is the vector of coefficients of q̃j in
the standard monomial basis, then (6.33) can be written as

A q̃coeff = ∆, (6.34)

where ∆ ∈ Rm×n is the matrix whose i-th row is given by yTi −q(xi)T , and A ∈ Rm×N

is the matrix whose i-th row is the vector of all standard monomials in n variables
and of degree up to m − 1 evaluated at the point xi. One can verify that the rows
of the matrix A are linearly independent (see, e.g., [61, Corollary 4.4]), and so the
matrix AAT is invertible. If we let A+ = AT (AAT )−1, then q̃coeff = A+∆ is a solution
to (6.34). Since the matrix A+ only depends on the points xi, and since all the entries
of the matrix ∆ are bounded in absolute value by δ′, there exists a constant c such
that all the entries of the matrix q̃coeff are bounded in absolute value by cδ′. Since
the set Ω is compact, there exists a constant C depending only on the points xi and
the set Ω such that ‖q̃‖Ω ≤ Cδ′.
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Finally, by taking p := q + q̃, we get p ∈ Interp({(xi, yi)}mi=1), and

‖f − p‖Ω ≤ δ′(1 + C).

We take δ′ = δ
1+C

to conclude the proof for this case.
· Case (ii): Suppose f ∈ Sym(G, σ, ρ,), where G is a finite group. Let δ′ be a

positive constant that will be fixed later. By theorem 6.5.2, there exists a polynomial
vector field p that satisfies ‖f − p‖Ω ≤ δ′. Let pG : Rn → Rn be the polynomial
defined as

pG(x) :=
1

|G|
∑
g∈G

ρ(g−1)p(σ(g)x) ∀x ∈ Rn,

where |G| is the size of the group G. We claim that pG ∈ Sym(G, σ, ρ,). Indeed, for
any h ∈ G and x ∈ Ω, using the fact that σ is a group homomorphism, we get

pG(σ(h)x) =
1

|G|
∑
g∈G

ρ(g−1)p(σ(gh)x).

By doing the change of variables g′ = gh in the sum above, and using the fact that ρ
is a group homomorphism, we get

pG(σ(h)x) =
1

|G|
∑
g′∈G

ρ(hg′−1)p(σ(g′)x)

=
1

|G|
∑
g′∈G

ρ(h)ρ(g′−1)p(σ(g′)x).

= ρ(h)pG(x).

We now claim that by by taking δ′ = δ
(

1
|G|
∑

g∈G ‖ρ(g−1)‖
)−1

, where ‖ ·‖ denotes

the operator norm of its matrix argument, we get ‖f − pG‖Ω ≤ δ. Indeed,

f(x)− pG(x) =
1

|G|
∑
g∈G

(
f(x)− ρ(g−1)p(σ(g)x)

)
=

1

|G|
∑
g∈G

ρ(g−1) (ρ(g)f(x)− p(σ(g)x))

=
1

|G|
∑
g∈G

ρ(g−1) (f(σ(g)x)− p(σ(g)x)) ,
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where in the last equation, we used the fact that f ∈ Sym(G, σ, ρ,). Therefore,

‖f(x)− pG(x)‖ ≤ 1

|G|
∑
g∈G

‖ρ(g−1)‖‖f(σ(g)x)− p(σ(g)x)‖2

≤

(
1

|G|
∑
g∈G

‖ρ(g−1)‖

)
δ′ = δ.

· Case (iii): If f ∈ Pos({(Pi, Ni)}ni=1), where for each i ∈ {1, . . . , n}, the sets Pi
and Ni are subsets of Ω and satisfy Pi ∩Ni = ∅.

For i = 1, . . . , n, let di denote the distance between the sets Pi and Ni:

di := min
x∈Pi,x′∈Ni

‖x− x′‖2.

Since Pi and Ni are compact sets with empty intersection, the scalar di is positive.
Fix γ to be any positive scalar smaller than mini=1,...,n di. For i = 1, . . . , n, let

P γ
i := {x+

γ

2
z | x ∈ Pi, z ∈ Rn, and ‖z‖2 ≤ 1},

Nγ
i := {x+

γ

2
z | x ∈ Ni, z ∈ Rn, and ‖z‖2 ≤ 1}.

With our choice of γ, P γ
i ∩ N

γ
i = ∅ for i = 1, . . . , n. Let ψ : Rn → Rn be the

piecewise-constant function defined as

ψi(x) =


1 if x ∈ P γ

i

−1 if x ∈ Nγ
i

0 otherwise
for i = 1, . . . , n,

and φγ : Rn → R be the “bump-like” function that is equal to e
− 1

1−‖z‖2 when ‖z‖2 ≤ γ
2

and 0 elsewhere. Let ψconv : Rn → Rn be the normalized convolution of ψ with φγ ,
i.e.,

ψconv(x) :=
1∫

z∈Rn φ
γ(z)dz

∫
z∈Rn

ψ(x+ z)φγ(z)dz.

Note that ψconv is a continuous function as it is the convolution of a piecewise-constant
function ψ with a continuous function φγ. Moreover, for each i ∈ {1, . . . , n}, ψconv

i

satisfies

ψconv
i (x) = 1 ∀x ∈ Pi, ψconv

i (x) = −1 ∀x ∈ Ni, and |ψconv
i (x)| ≤ 1 ∀x ∈ Ω.

Now let f δ ∈ C◦1(Ω) be the vector field defined component-wise by

f δi (x) = fi(x) +
δ

2
√
n
ψconv
i (x) i = 1, . . . , n.
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Note that for i = 1, . . . , n, the function f δi is continuous, bounded below by δ
2
√
n

on

Pi, and bounded above by −δ
2
√
n

on Ni. Moreover ‖f − f δ‖Ω ≤ δ
2
. Theorem 6.5.2

guarantees the existence of a polynomial vector field p such that ‖f δ− p‖Ω ≤ δ
2
√
n
. In

particular, p ∈ Pos({(Pi, Ni)}ni=1) and satisfies ‖f − p‖Ω ≤ δ.
· Case (iv): If f ∈Mon({(Pij, Nij)}ni,j=1), where for each i, j ∈ {1, . . . , n}, the

sets Pij and Nij are subsets of Ω and belong to different connected components of
the graph G(Pi1, Ni1, . . . , Pin, Nin). (Recall the definition of this graph from the first
paragraph of Section 6.5.1.)

Consider an index i ∈ {1, . . . , n}, and let Ci1, . . . , Ciri be the connected compo-
nents of the graph G(Pi1, Ni1, . . . , Pin, Nin). Let Uil be the union of the sets in com-
ponent Cil. Since the sets Ui1, . . . , Uiri are compact and pairwise non-intersecting,
the minimum distance di := minx∈Uil,x′∈Uil′ ,l 6=l′ ‖x − x

′‖2 between any two of them is
positive. Fix γi to be a positive scalar smaller than di, and for each l ∈ {1, . . . , ri},
let

Uγi
il := {x+

γi
2
z | x ∈ Uil, z ∈ Rn, and ‖z‖2 ≤ 1}.

Define ψi : Rn → R to be the piecewise-linear function defined as

ψi(x) =

{ ∑
j:Pij∈Cl xj −

∑
j:Nij∈Cl xj if x ∈ Uγi

il for some l ∈ {1, . . . , ri}
0 otherwise.

Let ψconv
i : Rn → R be the normalized convolution of ψi with the “bump-like” function

φγi : Rn → R that is equal to e
− 1

1−‖z‖2 when ‖z‖2 ≤ γi
2

and 0 elsewhere; that is

ψconv
i (x) :=

1∫
z∈Rn φ

γi(z)dz

∫
z∈Rn

ψi(x+ z)φγi(z)dz.

The function ψconv
i is continuously differentiable (because φγi is continuously differ-

entiable) and satisfies

∂ψconv
i

∂xj
(x) = 1 ∀x ∈ Pij,

∂ψconv
i

∂xj
(x) = −1 ∀x ∈ Nij,

|ψconv
i (x)| ≤ sup

x∈Ω
|ψi(x)| ∀x ∈ Ω.

Now, let ψconv := (ψconv
1 , . . . , ψconv

n )T and f δ
′
(x) := f(x)+δ′ψconv(x) for a constant

δ′ > 0 that will be fixed later. Note that ‖f δ′ − f‖Ω ≤ δ′‖ψconv‖Ω, and for each pair
of indices i, j ∈ {1, . . . , n},

∂f δ
′
i

∂xj
(x) ≥ δ′ ∀x ∈ Pij,

∂f δ
′
i

∂xj
(x) ≤ −δ′ ∀x ∈ Nij.

A generalization of the Stone-Weierstrass approximation result stated in The-
orem 6.5.2 to continuously-differentiable functions (see, e.g., [167]) guarantees the
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existence of a polynomial p : Rn → Rn such that

‖f δ′ − p‖Ω ≤ δ′, sup
x∈Ω

∣∣∣∣∂f δ′i∂xj
(x)− ∂pi

∂xj
(x)

∣∣∣∣ ≤ δ′/2 ∀i, j ∈ {1, . . . , n}.

In particular, p ∈Mon({Pij, Nij}ni,j=1) and satisfies ‖f − p‖Ω ≤ δ′(1 + ‖ψconv‖Ω).

We conclude the proof by taking δ′ = δ
1+‖ψconv‖Ω

.

· Case (v): If f ∈ Inv({Bi}ri=1), where the sets Bi are subsets of Ω, pairwise
nonintersecting, and defined as Bi := {x ∈ Rn | hij(x) ≥ 0, j = 1, . . . ,mi} for some
continuously-differentiable concave functions hij : Rn → R that satisfy

∀i ∈ {1, . . . , r}, ∃xi ∈ Bi such that hij(x
i) > 0 for j = 1, . . . ,mi. (6.35)

By the same argument as that for Case (iii), for each i ∈ {1, . . . , r}, there exists
a continuous function ψconv

i : Rn → R that satisfies

ψconv
i (x) = 1 ∀x ∈ Bi, ψ

conv
i (x) = 0 ∀x ∈ ∪i′ 6=iBi′ , |ψconv

i (x)| ≤ 1 ∀x ∈ Ω.

Let δ′ := δ
2r(1+maxx,x′∈Ω ‖x−x′‖2)

, and for i = 1 . . . , r, let xi ∈ Bi be any point satisfying

hij(x
i) > 0 for j = 1, . . . ,mi. Consider the continuous vector field

f δ
′
(x) := f(x)− δ′

r∑
i=1

ψconv
i (x)(x− xi).

For every x ∈ Ω, the triangular inequality gives

‖f(x)− f δ′(x)‖2 ≤ δ′
r∑
i=1

‖x− xi‖2

≤ rδ′max
x′∈Ω
‖x− x′‖2 =

δ

2
,

and so ‖f − f δ
′‖Ω ≤ δ/2. Furthermore, for each i ∈ {1, . . . , r}, for each

j ∈ {1, . . . ,mi}, and for each x ∈ Bi satisfying hij(x) = 0,

〈f δ′(x),∇hij(x)〉 = 〈f(x),∇hij(x)〉 − δ′
r∑

k=1

φconv
k (x)〈x− xk,∇hij(x)〉

= 〈f(x),∇hij(x)〉 − δ′〈x− xi,∇hij(x)〉
≥ −δ′〈x− xi,∇hij(x)〉
≥ δ′(hij(x

i)− hij(x))

= δ′hij(x
i),

(6.36)

where the second equality follows from the definition of ψconv
i and the fact that x ∈ Bi,

the first inequality from the fact thatf ∈ Inv({Bi}ri=1), the second inequality from
concavity of the function hij, and the last equality from the fact that hij(x) = 0.
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For a constant δ′′ > 0 that will be fixed later, Theorem 6.5.2 guarantees the
existence of a polynomial vector field p such that ‖f δ′ − p‖Ω ≤ δ′′. By triangular
inequality we have ‖f − p‖Ω ≤ δ/2 + δ′′. Furthermore, for each i ∈ {1, . . . , r}, for
each j ∈ {1, . . . ,mi}, and for each x ∈ Bi satisfying hij(x) = 0, we have

〈p(x),∇hij(x)〉 = 〈p(x)− f δ′(x),∇hij(x)〉+ 〈f δ′(x),∇hij(x)〉
≥ −δ′′‖∇hij(x)‖2 + δ′hij(x

i)

due to (6.36) and the Cauchy-Schwarz inequality. Let

δ′′ := min

{
δ

2
, min
i∈{1,...,r}

min
j∈{1,...,mi},x∈Bi

δ′
hij(x

i)

‖∇hij(x)‖2

}
,

and note that δ′′ > 0 as we needed before because hij(x
i) > 0 for each i ∈ {1, . . . , r}

and j ∈ {1, . . . ,mi}. With this choice of δ′′, we get that p ∈ Inv({Bi}ri=1) and
‖f − p‖Ω ≤ δ.

· Case (vi): If f ∈ Grad. In this case, there exists a continuously-differentiable
function V : Rn → R such that f(x) = −∇V (x). A generalization of the Stone-
Weierstrass theorem to continuously-differentiable functions (see, e.g., [167]) guaran-
tees the existence of a polynomial W : Rn → R such that

max
x∈Ω
‖∇V (x)−∇W (x)‖2 ≤ δ.

Letting p(x) = −∇W (x), we get that p ∈ Grad and ‖f − p‖Ω ≤ δ.
· Case (vi’): If f ∈ Ham. The proof for this case is analogous to Case (vi).

6.5.2 Approximating a vector field while approximately sat-
isfying multiple side information constraints

It is natural to ask whether theorem 6.5.1 can be generalized to allow for polynomial
approximation of vector fields satisfying multiple side information constraints. It
turns out that our proof idea of “smoothing by convolution” can be used to show that
the answer is positive if the following three conditions hold: (i) the side information
constraints are of type Interp,Pos,Mon, Inv, or Sym, (ii) each side information
constraint satisfies the assumptions of Theorem 6.5.1, and (iii) the regions of the space
where the first four types of side information constraints are imposed are pairwise
nonintersecting. In absence of condition (iii), the answer is no longer positive as the
next example shows.

Example 4. Consider the univariate vector field f : R→ R given by

f(x) :=

{
0 x ≥ 0

−e−
1
x2 x < 0.
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Side information S Functional LS,Ω(f)

Interp({(xi, yi)})mi=1)
with xi ∈ Ω

for i = 1 . . . ,m
max

i=1,...,m
‖f(xi)− yi‖2

Sym(G, σ, ρ,) max
g∈G

max
i=1,...,n
x∈Ω

|fi(σ(g)x)− (ρ(g)f(x))i|

Pos({(Pi, Ni)}ni=1)
with Pi, Ni ⊆ Ω
for i = 1, . . . , n

max
i=1,...,n

max

{
0,max
x∈Pi
−fi(x),max

x∈Ni
fi(x)

}
Mon({(Pij , Nij)}ni,j=1)

with Pij , Nij ⊆ Ω
for i, j = 1, . . . , n

max
i,j=1,...,n

max

{
0, max
x∈Pij

− ∂fi
∂xj

(x), max
x∈Nij

∂fi
∂xj

(x)

}
Inv({Bi}ri=1) where
Bi := {x | hij(x) ≥ 0
∀j ∈ {1, . . . ,mi}} ⊆ Ω

for i = 1, . . . , r

max
i=1...,r

max
x∈Bi

j∈{1,...,mi}
hij(x)=0

max {0,−〈f(x),∇hij(x)〉}

Grad inf
V :Rn→R

max
i=1,...,n
x∈Ω

∣∣∣∣fi(x) +
∂V

∂xi
(x)

∣∣∣∣
Ham

inf
H:Rn→R

max
(p,q)∈Ω,
i=1...,n/2

max

{∣∣∣∣fi(p, q) +
∂H

∂qi
(p, q)

∣∣∣∣ ,∣∣∣fi+n/2(p, q)− ∂H
∂pi

(p, q)
∣∣∣}

Table 6.2: For each side information S, the functional LS,Ω : C◦1(Ω) → R quantifies
how close a vector field f ∈ C◦1(Ω) is to satisfying S.

This vector field is continuously differentiable over R and satisfies the following com-
bination of side information constraints:

Interp({(0, 0), (1, 0)}) and Mon({([−1, 1], ∅)}). (6.37)

In other words, f is nondecreasing on the interval [−1, 1] and satisfies f(0) = f(1) =
0. Yet, the only polynomial vector field that satisfies the constraints in eq. (6.37) is
the identically zero polynomial. As a result, the vector field f cannot be approximated
arbitrarily well over [−1, 1] by polynomial vector fields that satisfy the side information
constraints in eq. (6.37).

To overcome difficulties associated with such examples, we introduce the notion
of approximate satisfiability of side information over a compact set Ω ⊂ Rn. Before
we give a formal definition of this notion, for each side information constraint S,
we present in Table 6.2 a functional LS,Ω : C◦1(Ω) → R that measures how close a
vector field in C◦1(Ω) is to satisfying the side information S. One can verify that the
functional LS,Ω has the following two properties: (i) for any vector field f ∈ C◦1(Ω),

LS,Ω(f) = 0 if and only if f satisfies S, (6.38)
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and (ii) for any δ > 0, there exists γ > 0, such that for any two vector fields f, f̂ ∈
C◦1(Ω),

‖f − f̂‖Ω ≤ γ and max
x∈Ω,

i,j=1,...,n

∣∣∣∣∣ ∂fi∂xj
(x)− ∂f̂i

∂xj
(x)

∣∣∣∣∣ ≤ γ =⇒ |LS,Ω(f)− LS,Ω(f̂)| ≤ δ.

(6.39)
Indeed, take e.g. S = Inv({Bi}ri=1), where Bi := {x ∈ Rn | hij(x) ≥ 0, j =
1, . . . ,mi}. It is clear from condition eq. (6.7) that LS,Ω(f) = 0 if and only if f ∈
Inv({Bi}ri=1). To verify the second property, let δ > 0 be given. If we take

γ = δ

 max
x∈Ω,
i=1...,r
j=1...,mi

‖∇hij(x)‖


−1

,

it is easy to see that for any two vector fields f, f̂ ∈ C◦1(Ω) satisfying ‖f − f̂‖Ω ≤ γ,
we must have |LS(f) − LS(f̂)| ≤ δ. Indeed, let i ∈ {1, . . . , r} and x ∈ Bi be such
that hij(x) = 0 for some j ∈ {1, . . . ,mi}. Then, the Cauchy-Schwarz inequality and
our choice of γ give

|〈f(x),∇hij(x)〉 − 〈f̂(x),∇hij(x)〉| ≤ ‖f − f̂‖Ω‖∇hij(x)‖ ≤ δ.

The desired result follows by taking the maximum over i, j, and x.

Definition 6.5.5 (δ-satisfiability). Let Ω ⊂ Rn be a compact set and consider any
side information S presented in Table 6.2 together with its corresponding functional
LS,Ω. For a scalar δ > 0, we say that a vector field f ∈ C◦1(Ω) δ-satisfies S if
LS,Ω(f) ≤ δ.

From a practical standpoint, for small values of δ, it is reasonable to substitute
the requirement of exact satisfiability of side information for δ-satisfiability. This
is especially true since most optimization solvers return an approximate numerical
solution anyway. The following theorem shows that polynomial vector fields can
approximate any continuously-differentiable vector field f and satisfy the same side
information as f up to an arbitrarily small error tolerance δ. It also shows that in
the context of learning a vector field from trajectory data, one can always impose
δ-satisfiability on a candidate polynomial vector field via semidefinite programming.

Theorem 6.5.6. For any compact set Ω ⊂ Rn, time horizon T > 0, desired approx-
imation accuracy ε > 0, desired side information satisfiability accuracy δ > 0, and
for any vector field f ∈ C◦1(Ω) that satisfies any combination of the side information
constraints from the first column of Table 6.2, there exists a polynomial vector field
p : Rn → Rn that δ-satisfies the same combination of side information as f and has
dΩ,T (f, p) ≤ ε.

Moreover, if the set Ω, the sets Pi, Ni in the definition of Pos({(Pi, Ni)}ni=1), the
sets Pij, Nij in the definition of Mon({Pij, Nij}ni,j=1), and the sets Bi in the definition
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of Inv({Bi}ri=1)) are all closed basic semialgebraic and their defining polynomials sat-
isfy the Archimedian property, then δ-satisfiability of all side information constraints
by the polynomial vector field p has a sum of squares certificate.

Proof. Let f ∈ C◦1(Ω) satisfy a list S1, . . . , Sk of side information constraints from the
first column of Table 6.2, and let the scalars T , ε, δ > 0 be fixed. A generalization of
the Stone-Weierstrass approximation theorem to continuously-differentiable functions
(see, e.g., [167]) guarantees that for any γ > 0, there exists a polynomial pγ : Rn → Rn

such that

‖f − pγ‖Ω ≤ γ and max
x∈Ω

i,j=1,...,n

∣∣∣∣ ∂fi∂xj
(x)− ∂pγi

∂xj
(x)

∣∣∣∣ ≤ γ. (6.40)

For the rest of this paragraph, for any γ > 0, we fix an (arbitrary) choice for the
polynomial pγ. Since for each i ∈ {1, . . . , k}, the functional LSi,Ω satisfies (6.39),
there exists a scalar γi > 0 for which LSi,Ω(pγ) ≤ δ/2 for any γ ∈ (0, γi]. If we let

γ̄ := min{ε/max{TeLT , 1 + LTeLT}, γ1, . . . , γk},

where L > 0 is any scalar for which f is L-Lipschitz over Ω, then the polynomial
p := pγ̄ δ/2-satisfies S1, . . . , Sk (and hence δ-satisfies S1, . . . , Sk), and because of
Proposition 6.5.3, also satisfies dΩ,T (f, p) ≤ ε.

To prove the second claim of the theorem, observe that for each ` ∈ {1, . . . , k},
the fact that p δ/2-satisfies S` implies the following inequalities:8

· If S` = Sym(G, σ, ρ,),

pi(σ(g)x)− (ρ(g)p(x))i + δ > 0 and (ρ(g)p(x))i − pi(σ(g)x) + δ > 0 ∀x ∈ Ω,

for g ∈ G and i = 1, . . . , n;

· If S` = Pos({(Pi, Ni)}ni=1),

pi(x) + δ > 0 ∀x ∈ Pi and − pi(x) + δ > 0 ∀x ∈ Ni,

for i = 1, . . . , n;

· If S` = Mon({(Pij, Nij)}ni,j=1),

∂pi
∂xj

(x) + δ > 0 ∀x ∈ Pij, and − ∂pi
∂xj

(x) + δ > 0 ∀x ∈ Nij,

for i, j = 1, . . . , n;

· If S` = Inv({Bi}ri=1),

〈p(x),∇hij(x)〉+ δ > 0 ∀x ∈ Bi ∩ {x ∈ Rn | hij(x) = 0},
8We exclude the case S` = Interp({(xi, yi)}mi=1) because verifying δ-satisfiability is trivial there,

and the case S` = Ham because the argument for it is similar to that of S` = Grad.

132



for i = 1 . . . , r, j = 1, . . . ,mi;

· If S` = Grad,

pi(x) +
∂V

∂xi
(x) + δ > 0 and − pi(x)− ∂V

∂xi
(x) + δ > 0 ∀x ∈ Ω,

for i = 1 . . . , n, where V : Rn → R is a polynomial function. (The fact that V
can be taken to be a polynomial function follows from an other application of the
generalization of Stone-Weierstrass approximation theorem that was used at the
beginning of this proof.)

Observe that each of the above inequalities states that a certain polynomial is pos-
itive over a certain closed basic semialgebraic set whose defining polynomials satisfy
the Archimedian property by assumption. Therefore, by Putinar’s Positivstellesatz
(Theorem 6.3.1), there exists a nonnegative integer d such that each one of these
inequalities has a degree-d sos-certificate (see eq. (6.11)). Therefore, δ-satisfiability
of each side information S1, . . . , Sk by the vector field p can be proven by a sum of
squares certificate.

6.6 Discussion and future research directions

From a computational perspective, our approach to learning dynamical systems from
trajectory data while leveraging side information relies on convex optimization. If the
side information of interest is Interp, Sym, Grad, or Ham, then our approach leads
to a least-squares problem, and thus can be implemented at large scale. For side infor-
mation constraints of Pos, Mon, or Inv, our approach requires solutions to semidef-
inite programs. Classical interior-point methods for SDP come with polynomial-time
solvability guarantees (see e.g. [202]), and in practice scale to problems of moderate
sizes. In the field of dynamical systems, many applications of interest involve a limited
number of state variables, and therefore our approach to learning such systems leads
to semidefinite programs that off-the-shelf interior-point method solvers can readily
handle. For instance, each semidefinite program that was considered in the numerical
applications of Section 6.4 was solved in under a second on a standard personal ma-
chine by the solver MOSEK [22]. An active and exciting area of research is focused on
developing algorithms for large-scale semidefinite programs (see e.g. [138, 68]), and
we believe that this effort can extend our learning approach to large-scale dynamical
systems.

The size of our semidefinite programs is also affected by the degree of our candidate
polynomial vector field and the degrees of the sos multipliers in (6.11) that result
from the application of Putinar’s Positivstellesatz. In practice, these degrees can be
chosen using a statistical model validation technique, such as cross validation. These
techniques take into account the fact that lower degrees can sometimes have a model
regularization effect and lead to better generalization on unobserved parts of the state
space.

We end by mentioning some questions that are left for future research.

133



· While the framework presented in this paper deals with continuous-time dynamical
systems, we believe that most of the ideas could be extended to the discrete-time
setting. It would be interesting to see how the definitions of side information, the
approximation results, and the computational aspects contrast with the continuous-
time case. Extending our framework to the problems of learning partial differential
equations and stochastic differential equations with side information would also be
interesting research directions.

· We have shown that for any δ > 0, polynomial vector fields can approximate to
arbitrary accuracy any vector field f ∈ C◦1(Ω) while δ-satisfying any list of side
information that f is known to satisfy. Even though from a practical standpoint,
δ-satisfiability is sufficient (when δ is small), it is an interesting mathematical
question in approximation theory to see which combinations of side information
can be imposed exactly on polynomial vector fields while preserving an arbitrarily
tight approximation guarantee to functions in C◦1(Ω).

· We have presented a list of six types of side information that arise naturally in
many applications and that lead to a convex formulation (meaning that a convex
combination of two vector fields that satisfy any one of the six side information
constraints will also satisfy the same side information constraint). There are of
course other interesting side information constraints that do not lead to a convex
formulation. Examples include the knowledge that an equilibirum point is locally
or globally stable/stabilizable, and the knowledge that trajectories of the system
starting in a set A ⊆ Rn avoid/reach another set B ⊆ Rn. It is an interesting
research direction to extend our approximation results and our sos-based approach
to handle some of these nonconvex side information constraints.

· Finally, from a statistical and information-theoretic point of view, it is an interest-
ing question to quantify the benefit of a particular side information constraint in
reducing the number of trajectory observations needed to learn a good approxima-
tion of the unknown vector field.
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Chapter 7

Teleoperator Imitation with
Continuous-time Safety

7.1 Introduction

Teleoperation is enabling robotic systems to become pervasive in settings where full
autonomy is currently out of reach [83, 210, 70]. Compelling applications include
minimally invasive surgery [195, 197], space exploration [206], remote vehicle opera-
tions [79] and disaster relief scenarios [140]. A human teleoperator can control a robot
through tasks that have complex semantics and are currently difficult to explicitly
program or to learn to solve efficiently without supervision.

A downside of teleoperation is that it requires continuous error-free [26] oper-
ator attention even for highly repetitive tasks. This problem can be addressed
through Learning-from-Demonstrations (LfD) or Imitation Learning techniques [182,
41] where a control law needs to be inferred from a small number of demonstrations.
Such a law can then bootstrap data-efficient reinforcement learning for challenging
tasks [210]. The demonstrator attempts to ensure that the robot’s motions capture
the relevant semantics of the task rather than requiring the robot to understand the
semantics. The learnt control law should take over from the teleoperator and enable
the robot to repeatedly execute the desired task even in dynamically changing con-
ditions. For example, the origin of a picking task and the goal of a placing task may
dynamically shift to configurations unseen during training, and moving obstacles may
be encountered during execution. The latter is particularly relevant in collaborative
human-robot workspaces where safety guarantees are paramount. In such situations,
when faced with an obstacle, the robot cannot follow the demonstration path any-
more and needs to recompute a new motion trajectory in real-time to avoid collision
and still attempt to accomplish the desired task.

Work done as Google Internship.
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(a) Pick and place teleoperation demonstra-
tion

(b) Pick and place via contracting vector
fields with obstacle avoidance.

Figure 7.1: (a) A non-technical user provides a demonstrates via teleoperation to
accomplish a pick and place task. (b) The robot now autonomously executes the pick
and place task with a contracting vector field (CVF) allowing for continuous time
guarantees while also avoiding obstacles.

Such real-time adaptivity can be elegantly achieved by associating demonstrations
with a dynamical system [173, 189, 115, 113, 116]: a vector field defines a closed-loop
velocity control law. From any state that the robot finds itself in, the vector field
can then steer the robot back towards the desired imitation behavior, without the
need for path replanning with classical approaches. Furthermore, the learnt vector
field can be modulated in real-time [114, 100, 117] in order to avoid collisions with
obstacles.

(a) Demo trajectory
xsample(t) started at (1,1)

(b) True Vector Field f real (c) Estimated vector
field f∗

Figure 7.2: (a) a non-technical user demonstrates a circular trajectory. (b) the
“ground truth” vector field. (c) the estimated vector field. Both vector fields produce
the same trajectory when started from (1, 1)T while they exhibit radically different
behavior when started from a point arbitrarily close to (1, 1)T .

At first glance, the problem of imitation learning of a smooth dynamical system,
ẋ = f(x) from samples (x, ẋ) appears to be a straightforward regression problem:
simply minimize imitation loss

∑
i,t ‖f(x(i)(t)) − ẋ(i)(t)‖2

2 over a suitable family of
vector valued maps, f ∈ F . However, a naive supervised regression approach may be
woefully inadequate, as illustrated in the middle panel of Figure 7.2 where the goal
is to have a KUKA arm imitate a circular trajectory. As can be seen, estimating
vector fields from a small number of trajectories potentially leads to instability – the
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estimated field easily diverges when the initial conditions are even slightly different
from those encountered during training. Therefore, unsurprisingly, learning with sta-
bility constraints has been the technical core of existing dynamical systems based LfD
approaches, e.g. see [113, 116, 173, 189]. However, these methods have one or more of
the following limitations: (1) they involve non-convex optimization for dynamics fit-
ting and constructing Lyapunov stability certificates respectively and, hence, have no
end-to-end optimality guarantees, (2) the notion of stability is not trajectory-centric,
but rather focused on reaching a single desired equilibrium point, and (3) they are
computationally infeasible when formulated in continuous-time. With this context,
our contributions in this chapter include the following:

· We formulate a novel continuous time optimization problem over vector fields in-
volving an imitation loss subject to a generalization-enforcing constraint that turns
the neighborhood of demonstrations into contracting regions [133]. Within this
region, all trajectories are guaranteed to coalesce towards the demonstration expo-
nentially fast.

· We show that our formulation leads to an instance of time-varying semidefinite
programming (see Chapter 2) for which a sum-of-squares relaxation [122, 157, 10]
turns out to be exact! Hence, we can find the globally optimal polynomial vector
field that has the lowest imitation loss among all polynomial vector fields of a given
degree that are contracting on a region around the demonstrations in continuous
time.

· On benchmark handwriting imitation tasks [113], our method outperforms com-
peting approaches in terms of a variety of imitation quality metrics.

· We demonstrate our methods on a 7DOF KUKA pick-and-place LfD task where
task completeness is accomplished despite dynamic obstacles in the environment,
changing initial poses and moving destinations. By contrast, without contraction
constraints, the vector field tends to move far from the demonstrated trajectory
activating emergency breaks on the arm and failing to complete the task.

Our “dirty laundry” includes: (1) we cannot handle high degree polynomials due to
the scalability limitations of current SDP solvers, and (2) our notion of incremental
stability is local, even though our method generalizes well in the sense that a wide
contraction tube is setup around the demonstrations.

7.2 Problem Statement

We are interested in estimating an unknown continuous time autonomous dynamical
system

ẋ = f real(x), (7.1)

where f real : Rn → Rn is an unknown continuously differentiable function.
We assume that we have access to one or several sample trajectories x(i) : [0, T ] 7→ Rn

that satisfy ẋ(i) = f real(x(i)) ∀t ∈ [0, T ], where T > 0 and i = 1, . . . ,M . These
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trajectories (x(i), for i = 1 . . . ,M) constitute our training data, and our goal is to
search for an approximation of the vector field f real in a class of functions of interest
F that reproduces trajectories as close as possible to the ones observed during
training. In other words, we seek to solve the following continuous time least squares
optimization problem (LSP):

f ∗ ∈ arg min
f∈F

M∑
i=1

∫ T

t=0

‖f(x(i)(t))− ẋ(i)(t)‖2
2 dt. (LSP)

In addition to consistency with f real, we want our learned vector field f to gener-
alize in conditions that were not seen in the training data. Indeed, the LSP problem
generally admits multiple solutions, as it only dictates how the vector field should
behave on the sample trajectories. This under-specification can easily lead to over-
fitting, especially if the class of function F is expressive enough. The example of
Figure 7.2 reinforces this phenomenon even for a simple circular motion. Note that
standard data-independent regularization (e.g., L2 regularizer) is insufficient to re-
solve the divergence illustrated here: a stronger stabilizer ensuring convergence, not
just smoothness, of trajectories is needed. The notion of stability of interest to us in
this chapter is contraction which we now briefly review.

7.2.1 Incremental stability and contraction analysis

Notions of stability called incremental stability and associated contraction analysis
tools [104, 133] are concerned with the convergence of system trajectories with respect
to each other, as opposed to classical Lyapunov stability which is with respect to a
single equilibrium. Contraction analysis derives sufficient and necessary conditions
under which the displacement between any two trajectories will go to zero. We give
in this section a brief presentation of this notion based on [28].

Contraction analysis of a system ẋ = f(x) is best explained by considering the
dynamics of δx(t), the infinitesimal displacement between two trajectories:

δẋ = Jf (x)δx where Jf (x) =
∂

∂x
f.

From this equation we can easily derive the rate of change of the infinitesimal squared
distance between two trajectories ‖δx‖2

2 = δxT δx as follows:

d

dt
‖δx‖2

2 = 2δxT δẋ = 2δxTJf (x)δx. (7.2)

More generally, we can consider the infinitesimal squared distance with respect to
a metric that is different from the Euclidian metric. A metric is given by smooth,
matrix-valued function M : R+ × Rn 7→ Rn×n that is uniformly positive definite, i.e.
there exists ε > 0 such that

M(t,x) � εI ∀t ∈ R+, ∀x ∈ Rn, (7.3)
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where I is the identity matrix and the relation A � B between two symmetric matrices
A and B is used to denote that the smallest eigenvalue of their difference A − B is
nonnegative. For the clarity of presentation, we only consider metric functions M(x)
that do not depend on time t.

The squared norm of an infinitesimal displacement between two trajectories with
respect to this metric is given by ‖δx‖M(x)

2 := δxTM(x)δx. The Euclidean metric
corresponds to the case where M(x) is constant and equal to the identity matrix.

Similarly to (7.2), the rate of change of the squared norm of an infinitesimal
displacement with respect to a metric M(x) follows the following dynamics:

d

dt
‖δx‖M(x)

2 = δxT (sym[M(x)Jf (x)] + Ṁ(x))δx, (7.4)

where sym[M ] denotes (M +MT )/2 for any square matrix M and Ṁ(x) is the n×n
matrix whose (i, j)-entry is ∇Mij(x)Tf(x). This motivates the following definition
of contraction.

Definition 7.2.1 (Contraction). For a positive constant τ and a subset U of Rn the
system ẋ = f(x) is said to be τ -contracting on the region U with respect to a metric
M(x) if

sym[M(x)Jf (x)] + Ṁ(x) � −τM(x) ∀x ∈ U. (7.5)

Remark 8. When the vector field f is a linear function ẋ = Ax, and the metric
M(x) is constant M(x) = P , it is easy to see that contraction condition (7.5) is in
fact equivalent to global stability condition,

P � 0 and sym(PAT ) � −τP. (7.6)

Given a τ -contracting vector field with respect to a metric M(x), we can conclude
from the dynamics in (7.4) that

d

dt
‖δx‖M(x)

2 ≤ −τ‖δx‖M(x)

Integrating both sides yields,

‖δx‖M(x) ≤ e−
τ
2
t‖δx(0)‖M(x)

Hence, any infinitesimal length ‖δx‖M(x) (and by assumption (7.3), ‖δx‖2) con-
verges exponentially to zero as time goes to infinity. This implies that in a contraction
region, trajectories will tend to converge together towards a nominal path. If the en-
tire state-space is contracting and a finite equilibrium exists, then this equilibrium is
unique and all trajectories converge to this equilibrium.

In the next section, we explain how to globally solve the following continuous-time
vector field optimization problem to fit a contracting vector field to the training data
given some fixed metric M(x). We refer to this as the least squares problem with
contraction (LSPC):
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min
f∈F

M∑
i=1

∫ T

t=0

‖f(x(i)(t))− ˙x(i)(t)‖2
2 dt (LSPC)

s.t. f is contracting on a region U ⊆ Rn

containing the demonstrations x(i)(t)

with respect to the metric M(x).

The search for a contraction metric itself may be interpreted as the search for a
Lyapunov function of the specific form V (x) = f(x)TM(x)f(x). As is the case with
Lyapunov analysis in general, finding such an incremental stability certificate for a
given dynamical system is a nontrivial problem; see [28] and references therein. If one
wishes to find the vector field and a corresponding contraction metric at the same
time, then the problem becomes non-convex. A common approach to handle this
kind of problems is to optimize over one parameter at a time and fix the other one
to its latest value and then alternate (i.e. fix a contraction metric and fit the vector
field, then fix the vector field and improve on the contraction metric.)

7.3 Learning Contracting Vector Fields as a Time-

Varying Convex Problem

In this section we explain how to formulate and solve the problem of learning a
contracting vector field from demonstrations described in (LSPC). We will first see
that we can formulate it as a time-varying semidefinite problem. We will then describe
how to use tools from sum of squares programming to solve it.

7.3.1 Time-varying semidefinite problems

We call time-varying semidefinite problems (TV-SDP) optimization programs of the
form

min
f∈F

L(f) (TV-SDP)

s.t. Lif(t) � 0 ∀i = 1, . . . ,m ∀t ∈ [0, T ],

where the variable t ∈ [0, T ] stands for time, the loss function L : F 7→ R in the
objective is assumed to be convex and the Li (i = 1, . . . ,m) are linear functionals
that map an element f ∈ F to a matrix-valued function Lif : [0, T ] 7→ Rn×n. We will
restrict the space of functions F to be the space of functions whose components are
polynomials of degree d ∈ N:

F := {f : Rn 7→ Rn | fi ∈ Rd[x]}, (7.7)
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and we make the assumption that Lif is a matrix with polynomial entries. Our
interest in this setting stems from the fact that polynomial functions can approximate
most functions reasonably well. Moreover, polynomials are suitable for algorithmic
operations as we will see in the next section. See [5] for a more in-depth treatment
of time-varying semidefinite programs with polynomial data.

Let us now show how to reformulate the problem in (LSPC) of fitting a vector field
f : Rn 7→ Rn to m sample trajectories {(x(i)(t), ẋ(i)(t)) | t ∈ [0, T ], i = 1, . . . ,m} as
a (TV-SDP). For this problem to fit within our framework, we start by approximating

each trajectory x(i)(t) with a polynomial function of time x
(i)
poly(t). Our decision

variable is the polynomial vector field f and we seek to optimize the following objective
function

L(f) :=
M∑
i=1

∫ T

t=0

‖f(x
(i)
poly(t))− ẋ

(i)
poly(t)‖2

2 dt (7.8)

which is already convex (in fact convex quadratic). In order to impose the contraction
of the vector field f over some region around the trajectories in demonstration, we
use a smoothness argument to claim that it is sufficient to impose contraction only
on the trajectories themselves. See Proposition 7.3.4 later for a more quantitative
statement of this claim. To be concrete, we take

Lif(·) :=− sym[M(x
(i)
poly(·))Jf (x(i)

poly(·))]

− Ṁ(x
(i)
poly(·))− τM(x

(i)
poly(·)), (7.9)

where M(x) is some known contraction metric.

7.3.2 Sum-of-squares programming

In this section we review the notions of sum-of-squares (SOS) programming and its
applications to polynomial optimization, and how we apply it for learning a con-
tracting polynomial vector field. SOS techniques have found several applications in
Robotics: constructing Lyapunov functions [2], locomotion planning [164], design and
verification of provably safe controllers [137], grasping and manipulation [65], inverse
optimal control [159] and modeling 3D geometry [13].

Let Rd[x] be the ring of polynomials p(x) in real variables x = (x1, . . . , xn) with
real coefficients of degree at most d. A polynomial p ∈ R[x] is nonnegative if p(x) ≥ 0
for every x ∈ Rn. In many applications, including the one we cover in this chapter,
we seek to find the coefficients of one (or several) polynomials without violating some
nonnegativity constraints. While the notion of nonnegativity is conceptually easy to
understand, even testing whether a given polynomial is nonnegative is known to be
NP-hard as soon as the degree d ≥ 4 and the number of variables n ≥ 3.
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A polynomial p ∈ Rd[x], with d even, is a sum-of-squares (SOS) if there exists
polynomials q1, . . . , qm ∈ R d

2
[x] such that

p(x) =
m∑
i=1

qi(x)2. (7.10)

An attractive feature of the set of SOS polynomials is that optimizing over it can be
cast as a semidefinite program of tractable size, for which many solvers already exist.
Indeed, it is known [122][157] that a polynomial p(x) of degree d can be decomposed
as in (7.10) if and only if there exists a positive semidefinite matrix Q such that

p(x) = z(x)TQz(x) ∀x ∈ Rn,

where z(x) is the vector of monomials of x up to degree d
2
, and the equality between

the two sides of the equation is equivalent to a set of linear equalities in the coefficients
of the polynomial p(x) and the entries of the matrix Q.

Sum-of Squares Matrices: If a polynomial p(x) is SOS, then it is obviously non-
negative, and the matrix Q acts as a certificate of this fact, making it easy to check
that the polynomial at hand is nonnegative for every value of the vector x. In order to
use similar techniques to impose contraction of a vector field, we need a slight general-
ization of this concept to ensure that a matrix-valued polynomial P (x) (i.e. a matrix
whose entries are polynomial functions) is positive semidefinite (PSD) for all values
of x. We can equivalently consider the scalar-valued polynomial p(x,u) := uTP (x)u,
where u is a n× 1 vector of new indeterminates, as positive semidefiniteness of P (x)
is equivalent to the nonnegativity of p(x,u). If p(x,u) is SOS, then we say that P is a
sum-of-squares matrix (SOSM) [118, 81, 186]. Consequently, optimizing over SOSM
matrices is a tractable problem.

Exact Relaxation: A natural question here is how much we lose by restricting
ourselves to the set of SOSM matrices as opposed the set of PSD matrices. In general,
these two sets are quite different [54]. In our case however, all the matrices considered
are univariate as they depend only on the variable of time t. It turns out that, in this
special case, these two notions are equivalent!

Theorem 7.3.1 (See e.g. [55]). A matrix-valued polynomial P (t) is PSD everywhere
(i.e. P (t) � 0 ∀t ∈ R) if and only if the associated polynomial p(t,u) := uTP (t)u is
SOS.

The next theorem generalizes this result to the case where we need to impose
PSD-ness only on the interval [0, T ] (as opposed to t ∈ R.)

Theorem 7.3.2 (See Theorem 2.5 of [67]). A matrix-valued polynomial P (t) of degree
d is PSD on the interval [0, T ] (i.e. P (t) � 0 ∀t ∈ [0, T ]) if and only if can be written
as {

P (t) = tV (t) + (T − t)W (t) if deg(P ) odd,
P (t) = V (t) + t(T − t)W (t) if deg(P ) even.
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where V (t) and W (t) are SOSM. In the first case, V (t) and W (t) have degree at most
deg(P ) − 1, and in the second case V (t) (resp. W (t)) has degree at most deg(P )
(resp. deg(P )− 2). When that is the case, we say that P (t) is SOSM on [0, T ].

7.3.3 Main result and CVF-P

The main result of this section is summarized in the following theorem that states
that the problem of fitting a contracting polynomial vector field to polynomial data
can be cast as a semidefinite program.

Theorem 7.3.3. The following semidefinite program

min
f∈F

M∑
i=1

∫ T

t=0

‖f(x(i)
p (t))− ẋp

(i)(t)‖2
2 dt (LSPC-SOS)

s.t. Lif is SOSM on [0, T ] for i = 1, . . . ,M.

with F , Li, and L defined as in (7.7), (7.9) and (7.8) resp. finds the polynomial
vector field that has the lowest fitting error L(f) among all polynomial vector fields

of degree d that are contracting on a region containing the demonstrations x
(i)
p .

To reiterate, the above sum-of-squares relaxation leads to no loss of optimality:
the SDP above returns the globally optimal solution to the problem stated in LSPC.
Our numerical implementation uses the Splitting Conic Solver (SCS) [147] for solving
large-scale convex cone problems.

Remark 9. Note that the time complexity of solving the SDP defined in (LSPC-SOS)
is bounded above by a polynomial function of the number of trajectories, the dimension
n of the space where they live, and the degree d of the candidate polynomial vector
field. In practice however, only small to moderate values for n and d can be solved
for as the exponents appearing in this polynomial are prohibitively large. Significant
progress has been made in recent years in inventing more scalable alternatives to SDPs
based on linear and second order cone programming that can be readily applied to our
framework [8].

For the rest of this chapter, our approach will be abbreviated as CVF-P, standing
for Polynomial Contracting Vector Fields.

7.3.4 Generalization properties

The contraction property of CVF-P generalizes to a wider region in the state space.
The next proposition shows that any sufficiently smooth vector field that is feasible for
the problem stated in LSPC-SOS is contracting on a “tube” around the demonstrated
trajectories.

Proposition 7.3.4 (A lower bound on the contraction tube). If f : Ω ⊆ Rn 7→ Rn

is a twice continuously differentiable vector field that satisfies

− sym[M(x(t))Jf (x(t))]− Ṁ(x(t)) � τM(x) ∀t ∈ [0, T ]
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where Ω is a compact region of Rn, τ is a positive constant, M(x) is a positive definite
metric, and x : [0, T ] 7→ Rn is a path, then f is τ/2-contracting with respect to the
metric M(x) on the region U defined by

U := {x(t) + δ | t ∈ [0, T ], ‖δ‖2 ≤ ε} ∩ Ω,

where ε is positive scalar depending only τ and on the smoothness parameters of f(x)
and M(x) and is defined explicitly in Eqn. 7.11.

For the proof we will need the following simple fact about symmetric matrices.

Lemma 7.3.5. For any n× n symmetric matrices A and B

|λmin(A)− λmin(B)| ≤ nmax
ij
|Aij −Bij|,

where λmin(·) denotes the smallest eigenvalue function.

Proof of Proposition 7.3.4. Let f , M, Ω and τ be as in the statement of Proposition
7.3.4. Define c := minx∈Ω λmin(M(x)). Notice that since the metric M(x) is uniformly
positive definite, then c > 0. Let us now define

ε :=
τc

2nK
> 0 (7.11)

where K is the scalar equal to

max
1≤i,j≤n

sup
x∈Ω
‖ ∂
∂x

(
sym[M(x)Jf (x)] + Ṁ(x)− τ

2
M(x)

)
ij
‖2.

Fix t ∈ [0, T ], and let δ be a vector in Rn such that ‖δ‖2 ≤ ε. Our aim is to
prove that the matrix Rδ defined by

− sym[M(x(t) + δ)Jf (x(t) + δ)]− Ṁ(x(t) + δ)− τ

2
M(x(t) + δ)

is positive semidefinite. Notice that our choice for K guarantees that the maps
δ 7→ Rδ

ij are L-Lipchitz for i, j = 1, . . . , n, therefore maxij |Rδ
ij − R0

ij| ≤ Kε. Using
Lemma 7.3.5 we conclude that the smallest eigenvalues of Rδ and R0 are within a
distance of nKε of each other. Since we assumed that R0 � τ

2
M(x(t)), then λmin(R0)

is at least c τ
2
, and therefore λmin(Rδ) is at least c τ

2
− nKε. We conclude that our

choice of ε in (7.11) guarantees that Rδ is positive semidefinite.

We note that the estimate obtained in this proposition is quite conservative. In
practice the contraction tube is much larger than what is predicted here.
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7.4 Empirical Comparisons: Handwriting Imita-

tion

We evaluate our methods on the LASA library of two-dimensional human handwriting
motions commonly used for benchmarking dynamical systems based movement gen-
eration techniques in imitation learning settings [116][128][173]. This dataset contains
30 handwriting motions recorded with a pen input on a Tablet PC. For each motion,
the user was asked to draw 7 demonstrations of a desired pattern, by starting from
different initial positions and ending at the same final point. Each demonstration
trajectory comprises of 1000 position (x) and velocity (ẋ) measurements. We use 4
demonstrations for training and 3 demonstrations for testing as shown in Figure 7.3.

Figure 7.3: The figure on the left shows demonstration trajectories (dotted) and the
polynomial fit of the demonstrations (solid line) for the Angle shape. The figure on
the right visualizes both the polynomial fit (red), the learnt vector field (blue), and
the contraction region (orange) for the incrementally stable vector field learned using
our method.

We report in Table 7.1 comparisons on the Angle shape against state of the art
methods for estimating stable dynamical systems, the Stable Estimator of Dynam-
ical Systems (SEDS) [113], Control Lyapunov Function-based Dynamic Movements
(CLFDM) [115] and Dynamic Movement Primitives (DMP) [101]. The training pro-
cess in these methods involves non-convex optimization with no global optimality
guarantees. Additionally, DMPs can only be trained from one demonstration one
degree-of-freedom at a time. For all experiments, we learn degree 5 CVF-Ps with
τ = 1.0 and M(x) = I. We report the following imitation quality metrics.

Reproduction Accuracy: How well does the vector field reproduce positions
and velocities in training and test demonstrations, when started from same initial con-
ditions and integrated for the same amount of time as the human movement duration
(T ). Specifically, we measure reproduction error with respect to m demonstration
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Metric DMP SEDS CLFDM CVF-P
Reproduction Accuracy

TrainingTrajectoryError 4.1 7.2 4.9 6.5
TrainingVelocityError 7.4 14.6 11.0 13.9
TestTrajectoryError 5.5 4.6 12.2 3.8
TestVelocityError 8.7 11.3 15.5 11.4

Stability
DistanceToGoal 3.6 3.2 6.7 2.5
DurationToGoal - 3.9 4.3 3.3

NumberReachedGoal 0/7 7/7 7/7 7/7
GridDuration (sec) 5.9 3.7 9.7 1.9

GridFractionReachedGoal 6% 100% 100% 100%
GridDistanceToGoal 3.3 1.0 1.0 1.0
GridDTWD (×104) 2.4 1.4 1.4 2.0

Training and Integration Speed (in seconds)
TrainingTime 0.05 2.1 2.8 0.2

IntegrationSpeed 0.21 0.06 0.15 0.01

Table 7.1: LASA Angle shape benchmarks. Our approach is CVF-P.

trajectories as,

TrajectoryError =
1

m

m∑
i=1

1

Ti

Ti∑
t=0

‖xi(t)− x̂i(t)‖2

VelocityError =
1

m

m∑
i=1

1

Ti

Ti∑
t=0

‖ẋi(t)− ˆ̇xi(t)‖2.

The metrics TrainingTrajectoryError, TestTrajectoryError, TrainingVelocityError,
TestVelocityError report these measures with respect to training and test demon-
strations. At the end of the integration duration (T ), we also report DistanceToGoal:
how far the final state is from the goal (origin). Finally, to account for the situation
where the learnt dynamics is somewhat slower than the human demonstration,
we also generate trajectories for a much longer time horizon (30T ) and report
DurationToGoal : the time it took for the state to enter a ball of radius 1mm around
the goal, and how often this happened for the 7 demonstrations (NumReachedGoal).

Stability: To measure stability properties, we evolve the dynamical system
from 16 random positions on a grid enclosing the demonstrations for a long inte-
gration time horizon (30T). We report the fraction of trajectories that reach the
goal (GridFraction); the mean duration to reach the goal when that happens
(GridDuration); the mean distance to the Goal (GridDistanceToGoal) and the
closest proximity of the generated trajectories to a human demonstration, as mea-
sured using Dynamic Time Warping Distance (GridDTWD) [111] (since in this case
trajectories are likely of lengths different from demonstrations).

Training and Integration Speed: We measure both training time as well as
time to evaluate the dynamical system which translates to integration speed.
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Figure 7.4: GridDTWD comparison on Angle, G and J shapes.

(a) Home (b) Pick (c) Place

Figure 7.5: In our task, the robot must move between the (a) home to (b) pick, (c)
a place positions.

It can be seen that our approach is highly competitive on most metrics: repro-
duction quality, stability, and training and inference speed. In particular, it returns
the best mean dynamic time warping distance to the demonstrations when initialized
from points on a grid. A comparison of GridDTWD on a few other shapes is shown
in Figure. 7.4.

7.5 Pick-and-Place with Obstacles

We consider a kitting task shown in Figure 7.5 where objects are picked from a known
location and placed into a box. A teleoperator quickly demonstrates a few trajectories
guiding a 7DOF KUKA IIWA arm to grasp objects and place them in a box. After
learning from demonstrations, the robot is expected to continually fill boxes to be
verified and moved by a human working in close proximity freely moving obstacles in
and out of the workspace. The arm is velocity-controlled in joint space at 50 Hz.

7.5.1 Demonstration trajectory

Figure 7.6a shows the demonstration pick and place trajectory collected from the
user. This trajectory was collected using an HTC Vive controller operated by a user
standing in front of and watching the robot move through the demonstration as it is
produced. Different buttons on the remote were used to open/close the gripper, send
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(a) Demonstration
Trajectory

(b) CVF-P (c) CVF-P, 0.05
Noise

(d) CVF-P, 0.05
Noise

(e) CVF-P, 0.1
Noise

(f) CVF-P and Ob-
stacle

(g) VF-P, No Con-
traction,
No Noise, No Ob-
stacle

(h) VF-P, No Con-
traction,
0.05 Noise, No Ob-
stacle

Figure 7.6: (a) A user demonstrated trajectory visualization shows the path of the end
effector through cartesian space. (b) Eight trajectories executed using a vectorfield
in joint space learned from the demonstration. (c,d) Eight trajectories with uniform
noise between [-0.05, 0.05] radians was added per-joint to the initial joint state. (e)
Eight trajectories with uniform noise between [-0.1, 0.1] added to the initial joint
state. (f) Eight new trajectories with an object in the way that modulates the learned
vector field. Notice the motion deviates, and then returns to the desired trajectory.
(g) Eight trajectories without contraction, the arm deviates from the demonstration
and cannot complete the trajectory. (h) Eight trajectories without contraction and
[-0.05, 0.05] noise, the arm cannot complete the trajectory.

the arm to the Home position, and indicate the start of a new trajectory. The pick
and place task was collected as two separate trajectories, one for the pick motion and
another for the place motion.

7.5.2 Learning a composition of pick and place CVF-Ps

Using the demonstration trajectory, two different polynomial contracting vector fields
(CVF-Ps) were fit to the data, one for the pick motion, one for the place. These
trajectories were fit to a degree 2 polynomial with τ = 0.1 and M(x) = I, using
an SCS solver run for 2500 iterations. For the ease of visualization, we show the
trajectories in cartesian space in Figure 7.6. The CVF-P was fit to the trajectory in
the 7-dimensional joint space. The arm was then run through using the vector field
eight times starting from the home position. Each trajectory was allowed to run until
the L2-norm of the arm joint velocities dropped below a threshold of 0.01. At that
point, the arm would begin to move using the second vector field. The trajectories
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taken by the arm are shown in Figure 7.6b. The eight runs have very little deviation
from each other.

7.5.3 Generalization to different initial poses

Next, noise is added to the home position of the arm, and again the vector field is
used to move the arm through the task. Figure 7.6c noise is added uniformly from
the range [-0.05, 0.05] radians to each value of each joint of the arm’s starting home
position. Figure 7.6d, shows these same trajectories overlaid on the Kuka arm. In
Figure 7.6e uniform noise is added in the same manner from the range [−0.1, 0.1].
Due to contraction, trajectories are seen to converge from random initial conditions.

7.5.4 What happens without contraction constraints?

In Figure 7.6g the arm is run eight times using a vector field without contraction.
While the arm is consistent in the trajectory that it takes, the arm moves far from
the demonstrated trajectory, and eventually causes the emergency break to activate
at joint limits, failing to finish the task.

In Figure 7.6h The arm is again run eight times without contraction with noise
added uniformly from the range [-0.05, 0.05] to each the value of each joint of the
arm’s starting home position. The trajectory of the arm varies widely and had to be
cut short as it was continually causing the emergency break to engage.

7.5.5 Whole-body obstacle avoidance

Here we enable a Kuka robot arm to follow demonstrated trajectories while avoiding
obstacles unseen during training. In the system we describe below, collisions are
avoided against any part of robot body. At every timestep, a commodity depth
sensor like the Intel RealSense or PhaseSpace motion capture acquires a point cloud
representation of the obstacle. Our setup is along the lines of [109], although we
do not model occluded regions as occupied. At this point, our demonstrations and
trajectories exist in joint space J ≈ R7, while our obstacle pointclouds exists in
Cartesian space C ≈ R3 with an origin at the base of the robot.

Cartesian to joint space Map

We pre-compute a set-valued inverse kinematic map IK that maps a position c ∈ C
to a subset of J containing all the joint configurations that would cause any part of
the arm to occupy the position c.

More formally, the obstacles positions are known in Cartesian space C different
from the control space J of the robot. (e.g. we control the joint angles rather than
end-effector pose.) The Kuka arm simulator allows us to query the forward kinematics
map FK : J → C. To compute the inverse of this map, the joint space of the robot was
discretized into 658,945 discrete positions. These discrete positions were created by
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Figure 7.7: In order to produce a cartesian to joint space mapping, pybullet[62] was
used to place the arm in over 658,945 configurations such as the 4 in the top row.
Then a voxelization of the arm was produced in this pose using binvox.

regularly sampling each joint from a min to max angle using a step size of 0.1 radians.
As shown in Figure 7.7, the robot was positioned at each point of the 658,945 discrete
joint space points within pybullet[62], and the robot was voxelized using binvox[141].
This produced the map FK. We then compute IK := FK−1.

Modulation of contracting vector fields

Figure 7.8: (a) Shows a vector field f learnt from a nominal path (red). (b) Depicts
a repulsive vector field hobstacles associated with an obstacle (green disk). (c) Shows
modulated vector field f̃ (blue) plotted with a sample trajectory (green).

The obstacle positions are then incorporated in a repulsive vector-field to push
the arm away from collision as it moves,

hobstacles(t,x) :=
∑

positions of
obstacles c
at time t

∑
j∈T−1(c)

x− j
‖x− j‖r2

, (7.12)

where the integer r control how fast the effect of this vector field decays as a function
of distance (a high value of r makes the effect of hobstacles local, while a small value
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makes its effect more uniform.) This vector field is added to our learnt vector-field
f to obtain a modulated vector field (depicted in Figure 7.8)

f̃(t,x) = f(x) + α hobstacles(t,x),

where α is positive constant that is responsible for controlling the strength of the
modulation, that is then fed to the Kuka arm. If the modulation is local and the
obstacle is well within the joint-space contraction tube, we expect the motion to
re-converge to the demonstrated behavior.

We point out that it is possible to use alternative modulation methods that come
with different guarantees and drawbacks. In [114, 100] for instance, the authors use
a multiplicative modulation function that preserves equilibrium points in the case of
convex or concave obstacles.

While our approach does not enjoy the same guarantees, its additive nature allows
us to handle a large number of obstacles as every term in Eqn. 7.12 can be computed
in a distributed fashion, and furthermore, we do not need to impose any restrictions
on the shape of the obstacles (convex/concave). This is particularly important as our
control space J is different from the space C where the obstacle are observed, and
the map IK that links between the two spaces can significantly alter the shape of an
obstacle in general (e.g. a sphere in cartesian space can be mapped to a disconnected
set in joint space).

Real-time obstacle avoidance

Here, using a real-time motion capture system, an obstacle is introduced to the robot’s
workspace as shown in Figure 7.1b. Eight trajectories were executed from the home
position with the obstacle in the workspace, and the resultant trajectories are shown
in Figure 7.6f. At each timestep, the objects position was returned by the motion
capture system. The point in Cartesian space was used to modulate the joint space
vectorfield as described in Section 7.5.5. The tasks are accomplished as the arm
avoids obstacles but remains within the joint-space contraction tube re-converging to
the demonstrated behavior.

7.6 Conclusion

This work presents a novel approach to teleoperator imitation using contracting vec-
tor fields that are globally optimal with respect to loss minimization and providing
continuous-time guarantees on the behaviour of the system when started from within
a contraction tube around the demonstration. Our approach compares favorably with
other movement generation techniques. Additionally, we build a workspace cartesian
to joint space map for the robot, and utilize it to update our CVF on the fly to avoid
dynamic obstacles. We demonstrate how this approach enables the transfer of knowl-
edge from humans to robots for accomplishing a real world robotic pick and place
task. Future work includes greater scalability of our solution, composition of CVFs

151



for more complex tasks, integrating with a perception module and helping bootstrap
data-hungry reinforcement learning approaches.
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